Skip to main content
Log in

Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The effects of oxygen in the photolysis of rose bengal, eosin, erythrosin and methylene blue were studied in the presence of formate and electron donors, such as ascorbic acid, aromatic amino acids or aliphatic amines, e.g. triethylamine (TEA). The overall reaction is conversion of oxygen via the hydroperoxyl/superoxide ion radical into hydrogen peroxide. The quantum yield of oxygen uptake (\({\Phi _{{O_2}}}\)) increases with the donor concentration. The photoinduced formation of H2O2 is initiated by quenching of the triplet state of the dye by the donor and subsequent reactions of both the dye and donor radicals with oxygen. For methylene blue and the xanthene dyes in the presence of 10 mM ascorbic acid or 0.1 M TEA \({\Phi _{{O_2}}} = 0.07 - 0.25\). The spectral and kinetic properties of the specific dye transients, including the radicals involved and the pH and concentration dependences, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Gollnick, T. Franken, G. Schade, G. Dörhöfer, Photosensitized oxygenation as a function of the triplet energy of sensitizers, Ann. N. Y. Acad. Sci., 1970, 171, 89–107.

    Article  CAS  Google Scholar 

  2. V. S. Srinivasan, D. Podolski, N. J. Westrick and D. C. Neckers, Photochemical generation of O2- by rose bengal and Ru(bpy)32+, J. Am. Chem. Soc., 1978, 100, 6513–6515.

    Article  CAS  Google Scholar 

  3. W. W. Wilson and J. R. Heitz, Oxygen consumption during photobleaching of aqueous solutions of rose bengal, J. Agric. Food Chem., 1984, 32, 615–617.

    Article  CAS  Google Scholar 

  4. C. R. Lambert, T. Sarna and T. G. Truscott, Rose bengal radicals and their reactivity, J. Chem. Soc., Faraday Trans., 1990, 86, 3879–3882.

    Article  CAS  Google Scholar 

  5. T. Sarna, J. Zajac, M. K. Bowman and T. G. Truscott, Photoinduced electron transfer reactions of rose bengal and selected electron donors, J. Photochem. Photobiol., A, 1991, 60, 295–310.

    Article  CAS  Google Scholar 

  6. P. Bilski, R. Dabestani and C. F. Chignell, Influence of cationic surfactant on the photoprocesses of eosin and rose bengal in aqueous solution, J. Phys. Chem., 1991, 95, 5784–5791.

    Article  CAS  Google Scholar 

  7. P. Bilski, A. S. W. Li and C. F. Chignell, The photo-oxidation of N,N-diethylhydroxylamine by rose bengal in acetonitrile and water, Photochem. Photobiol., 1991, 54, 345–352.

    Article  CAS  Google Scholar 

  8. P. Bilski, A. G. Motten, M. Bilska and C. F. Chignell, The photooxidation of diethylhydroxylamine by rose bengal in micellar and nonmicellar aqueous solution, Photochem. Photobiol., 1993, 58, 11–18.

    Article  CAS  PubMed  Google Scholar 

  9. D. C. Neckers and O. M. Valdes-Aguilera, Photochemistry of the xanthene dyes, Adv. Photochem., 1993, 18, 315–394.

    CAS  Google Scholar 

  10. M. Rózanowska, J. Ciszewska, W. Korytowski and T. Sarna, Rose bengal-photosensitized formation of hydrogen peroxide and hydroxyl radicals, J. Photochem. Photobiol., B, 1995, 29, 71–77.

    Article  Google Scholar 

  11. S. Criado, S. G. Bertolotti, N. A. García, Kinetic aspects of the rose bengal-sensitized photo-oxygenation of tryptophan alkyl esters. Ground state and photopromoted dye-tryptophan derivative interactions, J. Photochem. Photobiol., B, 1996, 34, 79–86.

    Article  CAS  Google Scholar 

  12. C. R. Lambert and I. E. Kochevar, Does rose bengal triplet generate superoxide anion?, J. Am. Chem. Soc., 1996, 118, 3297–3298.

    Article  CAS  Google Scholar 

  13. C. R. Lambert and I. E. Kochevar, Electron transfer quenching of the rose bengal triplet state, Photochem. Photobiol., 1997, 66, 15–25.

    Article  CAS  PubMed  Google Scholar 

  14. J. D. Spikes, H.-R. Shen, P. Kopecková and J. Kopecek, Photodynamic crosslinking of proteins. III. Kinetics, of the FMN- and Rose Bengal-sensitized photooxidation and intermolecular crosslinking of model tyrosine-containing N-(2-hydroxypropyl)methacrylamide copolymers, Photochem. Photobiol., 1999, 70, 130–137.

    Article  CAS  PubMed  Google Scholar 

  15. M. Díaz, M. Luiz, S. Bertolotti, S. Miskoski, N. A. García, Scavenging of photogenerated singlet molecular oxygen and superoxide radical anion by sulfa drugs - Kinetics and mechanism, Can. J. Chem., 2004, 82, 1752–1759.

    Article  Google Scholar 

  16. A. Posadaz, A. Biasutti, C. Casale, J. Sanz, F. Amat-Guerri, N. A. García, Rose Bengal-sensitized photooxidation of the dipeptides l-tryptophyl-l-phenylalanine, l-tryptophyl-l-tyrosine and l-tryptophyl-l-tryptophan: Kinetics, mechanism and photoproducts, Photochem. Photobiol., 2004, 80, 132–138.

    Article  CAS  PubMed  Google Scholar 

  17. E. F. Zwicker and L. I. Grossweiner, Transient measurements of photochemical processes in dyes. II. The, mechanism of the photosensitized oxidation of aqueous phenol by eosin, J. Phys. Chem., 1963, 67, 549–555.

    Article  CAS  Google Scholar 

  18. Y. Usui and M. Koizumi, An interpretation of the photochemical behavior of a dye-reducing agent-oxygen system on the basis of a switch-over of the primary processes, Bull. Chem. Soc. Jpn., 1967, 40, 440–446.

    Article  CAS  Google Scholar 

  19. Y. Usui, E. Kobayashi, A. Kazami and S. Sakuma, Mechanistic interpretations of the dye-sensitized formation of hydrogen peroxide in an aqueous solution, Bull. Chem. Soc. Jpn., 1980, 53, 2716–2720.

    Article  CAS  Google Scholar 

  20. I. Kraljic and L. Lindqvist, Laser photolysis study of triplet eosin and thionine reactions in photosensitized oxidations, Photochem. Photobiol., 1974, 20, 351–355.

    Article  CAS  Google Scholar 

  21. R. Rizzuto and J. D. Spikes, The eosin-sensitized photooxidation of substituted phanylalanines and tyrosines, Photochem. Photobiol., 1977, 25, 465–476.

    Article  CAS  PubMed  Google Scholar 

  22. R. Straight and J. D. Spikes, Sensitized photooxidation of amino acids: effects of the reactivity on their primary amine groups with fluorescamine and o-phthalaldehyde, Photochem. Photobiol., 1978, 27, 565–569.

    Article  CAS  Google Scholar 

  23. R. Brennetot and J. Georges, Transient absorption of the probe beam by the erythrosine triplet in pulsed-laser thermal lens spectrometry: the influence of the solvent, oxygen and dye concentration, Chem. Phys. Lett., 1998, 289, 19–24.

    Article  CAS  Google Scholar 

  24. A. Penzkofer and A. Beidoun, Triplet-triplet absorption of eosin Y in methanol determined by nanosecond excimer laser excitation and picosecond light continuum probing, Chem. Phys., 1993, 177, 203–216.

    Article  CAS  Google Scholar 

  25. A. K. Davies, K. R. Howard, J. F. McKellar and G. O. Phillips, Primary processes in the methylene blue photosensitized oxidation of l-ascorbic acid, J. Photochem., 1972/73, 1, 423-425.

  26. R. Bonneau, P. Fornier, de Violet and J. Joussot-Dubien, Mechanism of photoreduction of thiazine dyes by EDTA studied by flash photolysis-II. pH dependence of electron abstraction rate constant of the dyes in their triplet state, Photochem. Photobiol., 1974, 19, 129–132.

    Article  CAS  Google Scholar 

  27. R. H. Kayser and R. H. Young, The photoreduction of methylene blue by amines-I. A flash photolysis study of the reaction between triplet methylene blue and amines, Photochem. Photobiol., 1976, 24, 395–401.

    Article  CAS  Google Scholar 

  28. G. R. Büttner, T. P. Doherty and T. D. Bannister, Hydrogen peroxide and hydroxyl radical formation by methylene blue in the presence of ascorbic acid, Radiat, Environ. Biophys., 1984, 23, 235–243.

    Article  Google Scholar 

  29. D. Severino, H. C. Junqueira, M. Gugliotti, D. S. Gabrielli and M. S. Baptista, Influence of negatively charged interfaces on the ground and excited state properties of methylene blue, Photochem. Photobiol., 2003, 77, 459–468.

    Article  CAS  PubMed  Google Scholar 

  30. R. A. Floyd, J. E. Schneider, Jr. and D. P. Dittmer, Methylene blue photoinactivation of RNA viruses, Antiviral Res., 2004, 61, 141–151.

    Article  CAS  PubMed  Google Scholar 

  31. S.-K. Lee and A. Mills, Novel photochemistry of leuco-methylene blue, Chem. Commun., 2003, 2366–2367.

    Google Scholar 

  32. C. M. Krishna, S. Uppuluri, P. Riesz, J. S. Zigler and B. Balasubramanian, A study of the photodynamic efficiencies of some eye lens constituents, Photochem. Photobiol., 1991, 54, 51–58.

    Article  CAS  PubMed  Google Scholar 

  33. H. Kim, L. J. Kirschenbaum, I. Rosenthal and P. Riesz, Photosensitized formation of ascorbate radicals by riboflavin: an ESR study, Photochem. Photobiol., 1993, 57, 777–784.

    Article  CAS  PubMed  Google Scholar 

  34. I. Carmichael and G. L. Hug, Triplet-triplet absorption spectra of organic molecules in condensed phases, J. Phys. Ref. Data, 1986, 15, 1–250.

    Article  Google Scholar 

  35. R. W. Redmond and J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  36. R. Straight, and J. D. Spikes, Photosensitized oxidation of biomolecules, in Singlet O2, ed. A. A. Frimer, CRC Press, Boca Raton, 1985, vol. 4, pp. 91–143.

    CAS  Google Scholar 

  37. M. J. Davies, Singlet oxygen-mediated damage to proteins and its consequences, Biochem. Biophys. Res. Commun., 2003, 305, 761–770.

    Article  CAS  PubMed  Google Scholar 

  38. M. Wrona and P. Wardman, Properties of the radical intermediate obtained on oxidation of 2’,7’-dichlorodihydrofluorescein, a probe for oxidative stress, Free Radical Biol. Med., 2006, 41, 657–667.

    Article  CAS  Google Scholar 

  39. H. Görner, Photoinduced oxygen uptake for 9,10-anthraquinone in air-saturated aqueous acetonitrile in the presence of formate, alcohols, ascorbic acid and amines, Photochem. Photobiol. Sci., 2006, 5, 1052–1058.

    Article  PubMed  Google Scholar 

  40. H. Görner, Photoinduced oxygen uptake for riboflavin in air-saturated aqueous acetonitrile in the presence of formate, alcohols, ascorbic acid and amines, J. Photochem. Photobiol., B, 2007, 87, 73–80.

    Article  CAS  Google Scholar 

  41. H. G. Heller and J. R. Langan, Photochromic heterocyclic fulgides. Part 3. The use od (E)-a-(2,5-dimethyl-3-furylethylidene)(isopropylidene)succinic anhydride as a simple convenient chemical actinometer, J. Chem. Soc., Perkin Trans., 1981, 2, 341–343.

    Article  Google Scholar 

  42. D. E. Cabelli, B. H. J. Bielski, Kinetics and mechanism of the oxidation of ascorbic acid/ascorbate by HO2/O2- radicals. A pulse radiolysis and stopped-flow photolysis study, J. Phys. Chem., 1983, 87, 1809–1812.

    Article  CAS  Google Scholar 

  43. I. Loeff, S. Goldstein, A. Treinin and H. Linschitz, Reactions of formate ion with triplets of anthraquinone-2-sulfonate, 1,4-naphthoquinone, benzophenone-4-carboxylate, and benzophenone-4-sulfonate, J. Phys. Chem., 1991, 95, 4423–4430.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Görner, H. Oxygen uptake induced by electron transfer from donors to the triplet state of methylene blue and xanthene dyes in air-saturated aqueous solution. Photochem Photobiol Sci 7, 371–376 (2008). https://doi.org/10.1039/b712496a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b712496a

Navigation