Skip to main content
Log in

Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV—LOV dimerization and interdomain interactions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The Bacillus subtilis protein YtvA is related to plant phototropins in that it senses UVA—blue-light by means of the flavin binding LOV domain, linked to a nucleotide-binding STAS domain. The structural basis for interdomain interactions and functional regulation are not known. Here we report the conformational analysis of three YtvA constructs, by means of size exclusion chromatography, circular dichroism (CD) and molecular docking simulations. The isolated YtvA-LOV domain (YLOV, aa 25–126) has a strong tendency to dimerize, prevented in full-length YtvA, but still observed in YLOV carrying the N-terminal extension (N-YLOV, aa 1–126). The analysis of CD data shows that both the N-terminal cap and the linker region (aa 127–147) between the LOV and the STAS domain are helical and that the central β-scaffold is distorted in the LOV domains dimers. The involvement of the central β-scaffold in dimerization is supported by docking simulation of the YLOV dimer and the importance of this region is highlighted by light-induced conformational changes, emerging from the CD data analysis. In YtvA, the β-strand fraction is notably less distorted and distinct light-driven changes in the loops/turn fraction are detected. The data uncover a common surface for LOV–LOV and intraprotein interaction, involving the central β-scaffold, and offer hints to investigate the molecular basis of light-activation and regulation in LOV proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Hefti, K. J. Francoijs, S. C. de Vries, R. Dixon, J. Vervoort, The PAS fold: A redefinition of the PAS domain based upon structural prediction, FEBS J., 2004, 271, 1198–1208.

    CAS  Google Scholar 

  2. W. R. Briggs, C. F. Beck, A. R. Cashmore, J. M. Christie, J. Hughes, J. A. Jarillo, T. Kagawa, H. Kanegae, E. Liscum, A. Nagatani, K. Okada, M. Salomon, W. Rüdiger, T. Sakai, M. Takano, M. Wada, J. C. Watson, The phototropin family of photoreceptors, Plant Cell, 2001, 13, 993–997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. W. R. Briggs, J. M. Christie, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 2002, 7, 204–210.

    Article  CAS  PubMed  Google Scholar 

  4. R. Banerjee, A. Batschauer, Plant blue-light receptors, Planta, 2005, 220, 498–502.

    Article  CAS  PubMed  Google Scholar 

  5. E. Huala, P. W. Oeller, E. Liscum, I. S. Han, E. Larsen, W. R. Briggs, Arabidopsis NPH1: A Protein Kinase with a Putative Redox-Sensing Domain, Science, 1997, 278, 2120–2123.

    Article  CAS  PubMed  Google Scholar 

  6. E. Knieb, M. Salomon, W. Rüdiger, Autophosphorylation, electrophoretic mobility and immunoreaction of oat Phototropin 1 Under UV and Blue Light, Photochem. Photobiol., 2005, 81, 177–182.

    Article  CAS  PubMed  Google Scholar 

  7. M. Salomon, J. M. Christie, E. Knieb, U. Lempert, W. R. Briggs, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor phototropin, Biochemistry, 2000, 39, 9401–9410.

    Article  CAS  PubMed  Google Scholar 

  8. M. Salomon, W. Eisenreich, H. Dürr, E. Scleicher, E. Knieb, V. Massey, W. Rüdiger, F. Müller, A. Bacher, G. Richter, An optomechanical transducer in the blue light receptor phototropin from Avena sativa, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 12357–12361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. M. Kasahara, T. E. Swartz, M. A. Olney, A. Onodera, N. Mochizuki, H. Fukuzawa, E. Asamizu, S. Tabata, H. Kanegae, M. Takano, J. M. Christie, A. Nagatani, W. R. Briggs, Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, rice, and Chlamydomonas reinhardtii, Plant Physiol., 2002, 129, 762–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. S. Crosson, K. Moffat, Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch, Plant Cell, 2002, 14, 1067–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. C. W. M. Kay, E. Schleicher, A. Kuppig, H. Hofner, W. Rüdiger, M. Schleicher, M. Fischer, A. Bacher, S. Weber, G. Richter, Blue light perception in plants. Detection and characterization of a light-induced neutral flavin radical in a C450A mutant of phototropin, J. Biol. Chem., 2003, 278, 10973–10982.

    Article  CAS  PubMed  Google Scholar 

  12. J. T. M. Kennis, S. Crosson, M. Gauden, I. H. M. van Stokkum, K. Moffat, R. van Grondelle, Primary Reactions of the LOV2 Domain of Phototropin, a Plant Blue-Light Photoreceptor, Biochemistry, 2003, 42, 3385–3392.

    Article  CAS  PubMed  Google Scholar 

  13. T. E. Swartz, S. B. Corchnoy, J. M. Christie, J. W. Lewis, I. Szundi, W. R. Briggs, R. A. Bogomolni, The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin, J. Biol. Chem., 2001, 276, 36493–36500.

    Article  CAS  PubMed  Google Scholar 

  14. T. Kottke, J. Heberle Dominic Hehn, P. Hegemann, Phot-LOV1: Photocycle of a Blue-Light Receptor Domain from the Green Alga Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 1192–1201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D. Matsuoka, S. Tokutomi, Blue light-regulated molecular switch of Ser/Thr kinase in phototropin, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 13337–13342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. J. M. Christie, T. E. Swartz, R. A. Bogomolni, W. R. Briggs, Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function, Plant J., 2002, 32, 205–219.

    Article  CAS  PubMed  Google Scholar 

  17. S. Crosson, S. Rajagopal, K. Moffat, The LOV domain family: photoresponsive signaling modules coupled to diverse output domains, Biochemistry, 2003, 42, 2–10.

    Article  CAS  PubMed  Google Scholar 

  18. A. Losi, The bacterial counterparts of plants phototropins, Photochem. Photobiol. Sci., 2004, 3, 566–574.

    Article  CAS  PubMed  Google Scholar 

  19. A. Losi, E. Polverini, B. Quest, W. Gärtner, First evidence for phototropin-related blue-light receptors in prokaryotes, Biophys. J., 2002, 82, 2627–2634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. U. Krauss, A. Losi, W. Gärtner, K.-E. Jaeger, T. Eggert, Initial characterization of a blue-light sensing, phototropin-related protein from Pseudomonas putida: a paradigm for an extended LOV construct, Phys. Chem. Chem. Phys., 2005, 7, 2229–2236.

    Article  CAS  Google Scholar 

  21. E. Schleicher, R. M. Kowalczyk, C. W. M. Kay, P. Hegemann, A. Bacher, M. Fischer, R. Bittl, G. Richter, S. Weber, On the reaction mechanism of adduct formation in LOV domains of the plant blue-light receptor phototropin, J. Am. Chem. Soc., 2004, 126, 11067–11076.

    Article  CAS  PubMed  Google Scholar 

  22. S. Crosson, K. Moffat, Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction, Proc. Natl. Acad. Sci. U. S. A., 2001, 98, 2995–3000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. R. Fedorov, I. Schlichting, E. Hartmann, T. Domratcheva, M. Fuhrmann, P. Hegemann, Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii, Biophys. J., 2003, 84, 2492–2501.

    Article  Google Scholar 

  24. S. M. Harper, L. C. Neil, K. H. Gardner, Structural basis of a phototropin light switch, Science, 2003, 301, 1541–1544.

    Article  CAS  PubMed  Google Scholar 

  25. S. M. Harper, J. M. Christie, K. H. Gardner, Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity, Biochemistry, 2004, 43, 16184–16192.

    Article  CAS  PubMed  Google Scholar 

  26. A. Losi, in Flavin photochemistry and photobiology, ed. D.-P. Häder and G. Jori, Elsevier, Amsterdam, 4th edn, 2006, ch. 10, pp. 223–276.

  27. T. Eitoku, Y. Nakasone, D. Matsuoka, S. Tokutomi, M. Terazima, Conformational dynamics of phototropin 2 LOV2 domain with the linker upon photoexcitation, J. Am. Chem. Soc., 2005, 127, 13238–13244.

    Article  CAS  PubMed  Google Scholar 

  28. B. L. Taylor, I. B. Zhulin, PAS domains: internal sensors of oxygen, redox potential and light, Microbiol. Mol. Biol. Rev., 1999, 63, 479–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. A. Gilles-Gonzalez, G. Gonzalez, Heme-based sensors: defining characteristics, recent developments, and regulatory hypotheses, J. Inorg. Biochem., 2005, 99, 1–22.

    Article  CAS  PubMed  Google Scholar 

  30. M. Salomon, U. Lempert, W. Rüdiger, Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain, FEBS Lett., 2004, 572, 8–10.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Nakasone, T. Eitoku, D. Matsuoka, S. Tokutomi, M. Terazima, Kinetic Measurement of Transient Dimerization and Dissociation Reactions of Arabidopsis Phototropin 1 LOV2 Domain, Biophys. J., 2006, 91, 645–653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. M. Nakasako, D. Matsuoka, K. Zikihara, S. Tokutomi, Quaternary structure of LOV-domain containing polypeptide of Arabidopsis FKF1 protein, FEBS Lett., 2005, 579, 1067–1071.

    Article  CAS  PubMed  Google Scholar 

  33. M. Nakasako, T. Iwata, D. Matsuoka, S. Tokutomi, Light-Induced Structural Changes of LOV Domain-Containing Polypeptides from Arabidopsis Phototropin 1 and 2 Studied by Small-Angle X-ray Scattering, Biochemistry, 2004, 43, 14881–1489.

    Article  CAS  PubMed  Google Scholar 

  34. P. Ballario, C. Talora, D. Galli, H. Linden, G. Macino, Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins, Mol. Microbiol., 1998, 29, 719–729.

    Article  CAS  PubMed  Google Scholar 

  35. L. Aravind, E. V. Koonin, The STAS domain a link between anion transporters and antisigma-factor antagonists, Curr. Biol., 2000, 10, R53–R55.

    CAS  PubMed  Google Scholar 

  36. S. Akbar, T. A. Gaidenko, K. Min, M. O’Reilly, K. M. Devine, C. W. Price, New family of regulators in the environmental signaling pathway which activates the general stress transcription factor of Bacillus subtilis, J. Bacteriol., 2001, 183, 1329–1338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. T. A. Gaidenko, T. J. Kim, A. L. Weigel, M. S. Brody, C. W. Price, The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis, J. Bacteriol., 2006, 188, 6387–6395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. M. Avila-Perez, K. J. Hellingwerf, R. Kort, Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA, J. Bacteriol., 2006, 188, 6411–6414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. V. Buttani, A. Losi, E. Polverini, W. Gärtner, Blue news: NTP binding properties of the blue-light sensitive YtvA protein from Bacillus subtilis, FEBS Lett., 2006, 580, 3818–3822.

    Article  CAS  PubMed  Google Scholar 

  40. S. M. Najafi, D. A. Harris, M. D. Yudkin, The SpoIIAA protein of Bacillus subtilis has GTP-binding properties, J. Bacteriol., 1996, 178, 6632–6634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. A. Losi, E. Ghiraldelli, S. Jansen, W. Gärtner, Mutational effects on protein structural changes and interdomain interactions in the blue-light sensing LOV protein YtvA, Photochem. Photobiol., 2005, 81, 1145–1152.

    Article  CAS  PubMed  Google Scholar 

  42. A. Losi, B. Quest, W. Gärtner, Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain, Photochem. Photobiol. Sci., 2003, 2, 759–766.

    Article  CAS  PubMed  Google Scholar 

  43. A. Perczel, M. Hollosi, G. Tusnady, G. D. Fasman, Convex constraint analysis: a natural deconvolution of circular dichroism curves of proteins, Protein Eng., 1991, 4, 669–679.

    Article  CAS  PubMed  Google Scholar 

  44. A. Perczel, K. Park, G. D. Fasman, Analysis of the circular dichroism spectrum of proteins using the convex constraint algorithm: A practical guide, Anal. Biochem., 1992, 203, 83–93.

    Article  CAS  PubMed  Google Scholar 

  45. I. R. Bates, P. Matharu, N. Ishiyama, D. Rochon, D. D. Wood, E. Polverini, M. A. Moscarello, N. J. Viner, G. Harauz, Characterization of a Recombinant Murine 18.5-kDa Myelin Basic Protein, Protein Expression Purif., 2000, 20, 285–299.

    Article  CAS  Google Scholar 

  46. C. Combet, C. Blanchet, C. Geourjon, G. Deleage, NPS@: Network Protein Sequence Analysis, Trends Biochem. Sci., 2000, 25, 147–150.

    Article  CAS  PubMed  Google Scholar 

  47. S. R. Comeau, D. W. Gatchell, S. Vajda, C. J. Camacho, ClusPro: An automated docking and discrimination method for the prediction of protein complexes, Bioinformatics, 2004, 20, 45–50.

    Article  CAS  PubMed  Google Scholar 

  48. J. G. Mandell, V. A. Roberts, M. E. Pique, V. Kotlovyi, J. C. Mitchell, E. Nelson, I. Tsigelny, L. F. Ten Eyck, Protein docking using continuum electrostatics and geometric fit, Protein Eng., 2001, 14, 105–113.

    Article  CAS  PubMed  Google Scholar 

  49. R. Chen, L. Li, Z. Weng, ZDOCK: an initial-stage protein-docking algorithm, Proteins, 2003, 52, 80–87.

    Article  CAS  PubMed  Google Scholar 

  50. L. Willard, A. Ranjan, H. Zhang, H. Monzavi, R. F. Boyko, B. D. Sykes, D. S. Wishart, VADAR: a web server for quantitative evaluation of protein structure quality, Nucleic Acids Res., 2003, 31, 3316–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. R. A. Laskowski, M. W. MacArthur, D. S. Moss, J. M. Thornton, PROCHECK-A program to check the stereochemical quality of protein structures, J. Appl. Crystallogr., 1993, 26, 283–291.

    Article  CAS  Google Scholar 

  52. R. W. Hooft, G. Vriend, C. Sander, E. E. Abola, Errors in protein structures, Nature, 1996, 381, 272–272.

    Article  CAS  PubMed  Google Scholar 

  53. C. Colovos, T. O. Yeates, Verification of protein structures: patterns of nonbonded atomic interactions, Protein Sci., 1993, 2, 1511–1519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. R. Luthy, J. U. Bowie, D. Eisenberg, Assessment of protein models with three-dimensional profiles, Nature, 1992, 356, 83–85.

    Article  CAS  PubMed  Google Scholar 

  55. J. Pontius, J. Richelle, S. J. Wodak, Deviations from standard atomic volumes as a quality measure for protein crystal structures, J. Mol. Biol., 1996, 264, 121–136.

    Article  CAS  PubMed  Google Scholar 

  56. J. R. Bradford, D. R. Westhead, Improved prediction of protein-protein binding sites using a support vector machines approach, Bioinformatics, 2005, 21, 1487–1494.

    Article  CAS  PubMed  Google Scholar 

  57. T. Kortemme, D. E. Kim, D. Baker, Computational alanine scanning of protein–protein interfaces, Sci. STKE, 2004, 2004219, pl2.

    PubMed  Google Scholar 

  58. N. Sreerama, S. Y. Venyaminov, R. W. Woody, Estimation of protein secondary structure from circular dichroism spectra: inclusion of denatured proteins with native proteins in the analysis, Anal. Biochem., 2000, 287, 243–251.

    Article  CAS  PubMed  Google Scholar 

  59. N. Sreerama, S. Y. Venyaminov, R. W. Woody, Estimation of the number of alpha-helical and beta-strand segments in proteins using circular dichroism spectroscopy, Protein Sci., 1999, 8, 370–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. K. Matsuo, R. Yonehara, K. Gekko, Improved Estimation of the Secondary Structures of Proteins by Vacuum-Ultraviolet Circular Dichroism Spectroscopy, J. Biochem., 2005, 138, 79–88.

    Article  CAS  PubMed  Google Scholar 

  61. N. Sreerama, R. W. Woody, Structural composition of betaI- and betaII-proteins, Protein Sci., 2003, 12, 384–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. N. J. Greenfield, Analysis of circular dichroism data, Methods Enzymol., 2004, 383, 282–317.

    Article  CAS  PubMed  Google Scholar 

  63. R. W. Woody, A. Koslowski, Recent developments in the electronic spectroscopy of amides and alpha-helical polypeptides, Biophys. Chem., 2002, 101–102, 535–551.

    Article  PubMed  Google Scholar 

  64. N. J. Greenfield, Methods to estimate the conformation of proteins and polypeptides from circular dichroism data, Anal. Biochem., 1996, 235, 1–10.

    Article  CAS  PubMed  Google Scholar 

  65. C. T. Chang, C. S. Wu, J. T. Yang, Circular dichroic analysis of protein conformation: inclusion of the beta-turns, Anal. Biochem., 1978, 91, 13–31.

    Article  CAS  PubMed  Google Scholar 

  66. T. Iwata, D. Nozaki, S. Tokutomi, H. Kandori, Comparative investigation of the LOV1 and LOV2 domains in Adiantum Phytochrome3, Biochemistry, 2005, 44, 7427–7434.

    Article  CAS  PubMed  Google Scholar 

  67. S. B. Corchnoy, T. E. Swartz, J. W. Lewis, I. Szundi, W. R. Briggs, R. A. Bogomolni, Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1, J. Biol. Chem., 2003, 278, 724–731.

    Article  CAS  PubMed  Google Scholar 

  68. T. Bednarz, A. Losi, W. Gärtner, P. Hegemann, J. Heberle, Functional variations among LOV domains as revealed by FT-IR difference spectroscopy, Photochem. Photobiol. Sci., 2004, 3, 575–579.

    Article  CAS  PubMed  Google Scholar 

  69. P. B. Card, P. J. A. Erbel, K. H. Gardner, Structural Basis of ARNT PAS-B dimerization: use of a common beta-sheet interface for hetero- and homodimerization, J. Mol. Biol., 2005, 353, 664–677.

    Article  CAS  PubMed  Google Scholar 

  70. H. J. Park, C. Suquet, J. D. Satterlee, C. Kang, Insights into signal transduction involving PAS domain oxygen-sensing heme proteins from the X-ray crystal structure of Escherichia Coli Dos Heme Domain (EcDosH), Biochemistry, 2004, 43, 2738–2746.

    Article  CAS  PubMed  Google Scholar 

  71. H. Miyatake, M. Mukai, S. Y. Park, S. Adachi, K. Tamura, H. Nakamura, K. Nakamura, T. Tsuchiya, T. Iizuka, Y. Shiro, Sensory mechanism of oxygen sensor FixL from Rhizobium meliloti: crystallographic, mutagenesis and resonance Raman spectroscopic studies, J. Mol. Biol., 2000, 301, 415–431.

    Article  CAS  PubMed  Google Scholar 

  72. W. Gong, B. Hao, S. S. Mansy, G. Gonzalez, M. A. Gilles-Gonzalez, M. K. Chan, Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction, Proc. Natl. Acad. Sci. U. S. A., 1998, 95, 15177–15182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aba Losi.

Additional information

† Electronic supplementary information (ESI) available: Calculation of accessible and buried surface areas using the VADAR tool. See DOI:10.1039/b610375h

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buttani, V., Losi, A., Eggert, T. et al. Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV—LOV dimerization and interdomain interactions. Photochem Photobiol Sci 6, 41–49 (2007). https://doi.org/10.1039/b610375h

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b610375h

Navigation