Issue 1, 2006

The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates

Abstract

Using a dissymmetrically-perturbed particle-in-a-box model, we demonstrate that the induced optical activity of chiral monolayer protected clusters, such as Whetten’s Au28(SG)16 glutathione-passivated gold nanoclusters (J. Phys. Chem. B, 2000, 104, 2630–2641), could arise from symmetric metal cores perturbed by a dissymmetric or chiral field originating from the adsorbates. This finding implies that the electronic states of the nanocluster core are chiral, yet the lattice geometries of these cores need not be geometrically distorted by the chiral adsorbates. Based on simple chiral monolayer protected cluster models, we rationalize how the adsorption pattern of the tethering sulfur atoms has a substantial effect on the induced CD in the NIR spectral region, and we show how the chiral image charge produced in the core provides a convenient means of visualizing dissymmetric perturbations to the achiral gold nanocluster core.

Graphical abstract: The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates

Supplementary files

Article information

Article type
Communication
Submitted
15 Aug 2005
Accepted
31 Oct 2005
First published
17 Nov 2005

Phys. Chem. Chem. Phys., 2006,8, 63-67

The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates

M. Goldsmith, C. B. George, G. Zuber, R. Naaman, D. H. Waldeck, P. Wipf and D. N. Beratan, Phys. Chem. Chem. Phys., 2006, 8, 63 DOI: 10.1039/B511563A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements