Issue 3, 2004

Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis

Abstract

An extremely simple, power-free pumping method for poly(dimethylsiloxane) (PDMS) microfluidic devices is presented. By exploiting the high gas solubility of PDMS, the energy for the pumping is pre-stored in the degassed bulk PDMS, therefore no additional structures other than channels and reservoirs are required. In a Y-shaped microchannel with cross section of 100 µm width × 25 µm height, this method has provided flow rate of 0.5–2 nL s−1, corresponding to linear velocity of 0.2–0.8 mm s−1, with good reproducibility. As an application of the power-free pumping, gold nanoparticle-based DNA analysis, which does not rely on the cross-linking mechanism between nanoparticles, has been implemented in a microchannel with three inlets. Target 15mer DNA has been easily and unambiguously discriminated from its single-base substituted mutant. Instead of colorimetric detection in a conventional microtube, an alternative detection technique suitable for microdevices has been discovered—observation of deposition on the PDMS surfaces. The channel layout enabled two simultaneous DNA analyses at the two interfaces between the three laminar streams.

Supplementary files

Article information

Article type
Paper
Submitted
15 Mar 2004
Accepted
15 Apr 2004
First published
12 May 2004

Lab Chip, 2004,4, 181-185

Power-free poly(dimethylsiloxane) microfluidic devices for gold nanoparticle-based DNA analysis

K. Hosokawa, K. Sato, N. Ichikawa and M. Maeda, Lab Chip, 2004, 4, 181 DOI: 10.1039/B403930K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements