Skip to main content
Log in

Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Trioxatriangulenium (TOTA+, 4,8,12-trioxa-4,8,12,12c-tetrahydro-dibenzo[cd,mn]-pyrenylium) is a closed shell carbenium ion, which is stable in non-nucleophilic polar solvents at ambient temperatures. In alcohols, small quantities of the leuco ether are formed in a reversible reaction. The physical and chemical properties of the excited singlet state of the trioxatriangulenium (TOTA+) carbenium ion are investigated by experimental and computational means. The degeneracy of the lowest excited states is counteracted by Jahn–Teller-type distortion, which leads to vibronic broadening of the long wavelength absorption band. A strong fluorescence is observed at 520 nm (τfl= 14.6 ns, ϕfl= 0.12 in deaerated acetonitrile). The fluorescence is quenched by 10 aromatic electron donors predominantly via a dynamic charge transfer mechanism, but ground state complexation is shown to contribute in varying degrees. Quenching is also observed in the presence of halide ions. Quenching rate constants are derived from lifetime measurements while charge transfer (CT) complex formation constants follow from the steady-state Stern–Volmer plots. CT-complex formation with three discogenic triphenylenes is studied separately. Phosphorescence spectra, triplet lifetimes, and triplet–triplet absorption spectra are provided. In the discussion, TOTA+ is compared to the unsubstituted xanthenium ion and its 9-phenyl derivative with respect to the excited state properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and notes

  1. R. A. McClelland, N. Mathivanan and S. Steenken, Laser flash photolysis of 9-fluorenol. Production and reactivities of the 9-fluorenol radical cation and the 9-fluorenyl cation, J. Am. Chem. Soc., 1990, 112, 12, 4857.

    Article  CAS  Google Scholar 

  2. D. F. Duxbury, The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media, Chem. Rev., 1993, 93, 1, 381.

    Article  CAS  Google Scholar 

  3. L. J. Johnston and D. F. Wong, Electron Transfer Reactions of Triplet 9-Arylxanthenium and 9-Arylthioxanthenium Cations, J. Phys. Chem., 1993, 97, 1589.

    Article  CAS  Google Scholar 

  4. A. Samanta, K. R. Gopidas and P. K. Das, Carbocationic fluorescence and its efficient electron-transfer quenching, J. Phys. Chem., 1993, 97, 1583.

    Article  CAS  Google Scholar 

  5. A. Azarani, A. B. Berinstain, L. J. Johnston and S. Kazanis, Electron transfer reactions between excited diarylmethyl and triarylmethyl carbocations and aromatic donors, J. Photochem. Photobiol., 1991, 57, 175.

    Article  CAS  Google Scholar 

  6. A. Samanta, K. R. Gopidas and P. K. Das, Electron acceptor behavior of 9-phenylxanthenium carbocation singlet, Chem. Phys. Lett., 1990, 167, 165.

    Article  CAS  Google Scholar 

  7. Y. Takahashi, S. Sankararaman and J. K. Kochi, Carbocations as electron acceptors. Photoexcitation of the charge-transfer complexes of tropylium salts and aromatic hydrocarbons, J. Am. Chem. Soc., 1989, 111, 8, 2954.

    Article  CAS  Google Scholar 

  8. M. K. Boyd, Photochemistry and Photophysics of Carbocations, in Organic Photochemistry, eds. V. Ramamurthy and K. S. Schanze, Marcel Dekker, New York, 1997, p. 147.

    Chapter  Google Scholar 

  9. F. C. Krebs, B. W. Laursen, I. Johannsen, A. Faldt, K. Bechgaard, C. S. Jacobsen, N. Thorup and K. Boubekeur, The geometry and structural properties of the 4 8,12-trioxa-4,8,12,12c-tetrahydrobenzo[cd,mn]pyrene system in the cationic state. Structures of a planar organic cation with various monovalent and divalent anions, Acts Cryst., 1999, B55, 410.

    Article  CAS  Google Scholar 

  10. J. Reynisson, G. Balakrishnan, R. Wilbrandt and N. Harrit, Vibrational spectroscopic and quantum chemical studies of the trioxatriangulenium carbocation, J. Mol. Struct., 2000, 520, 63.

    Article  CAS  Google Scholar 

  11. J. C. Martin and R. G. Smith, Factors Influencing the Basicities of Triarylcarbinols. The Synthesis of Sesquixanthydrol, J. Am. Chem. Soc., 1964, 86, 2252.

    Article  CAS  Google Scholar 

  12. D. Bethelland and V. Gold, Carbonium Ions, An Introduction, Academic Press, London, 1967, 77.

    Google Scholar 

  13. D. Shukla and P. Wan, Product studies of electron transfer from dimethoxybenzene and trimethoxybenzene to photoexcited xanthenium cations in S1 in aqueous acid solution, J. Photochem. Photobiol. A: Chem, 1993, 76, 47.

    Article  CAS  Google Scholar 

  14. I. Nemcová and I. Nemec, The voltammetry of triarylmethane dyes in acetonitrile, J. Electroanal. Chem., 1971, 30, 506.

    Article  Google Scholar 

  15. N. Harrit, J. Reynisson, B. Laursen and R. Wilbrandt, Photophysics of trioxatriangulenes, Book of Abstracts, 216th ACS National Meeting, Boston C.A., 1998: 526577, 1998.

    Google Scholar 

  16. J. Reynisson, Spectroscopic and Photophysical Properties of the Trioxatriangulenium Carbocation and its Interactions with Supramolecular Systems, PhD thesis, 2000, http://www.risoe.dk/rispubl/fys/ris%2Dr%2D1191.htm

    Google Scholar 

  17. S. Dileesh and K. R. Gopidas, Photophysical and electron transfer studies of a stable carbocation, Chem. Phys. Lett, 2000, 330, 3,4, 397.

    Article  CAS  Google Scholar 

  18. H. Kessler, A. Moosmayer and A. Rieker, Das ausmass sterischer hinderung in substituirten triarylmethanen und triarylmethyl-radikalen, Tetrahedron, 1969, 25, 287.

    Article  CAS  Google Scholar 

  19. N. Isaacs, Physical Organic Chemistry, 2. ed., Longman Scientific & Technical, Essex, 1994, 272.

    Google Scholar 

  20. G. Jones II and K. Goswami, Photoreduction of crystal violet in isopropyl alcohol. Mechanisms involving a leuco ether derivative and dye ion pairs, J. Phys. Chem. A., 1986, 90, 5414.

    Article  CAS  Google Scholar 

  21. N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings, Menlo Park, 1978, 183.

    Google Scholar 

  22. I. Carmichael and G. L. Hug, Triplet-triplet absorption spectra of organic molecules in condensed phases, J. Phys. Chem. Ref. Data, 1986, 15, 1, 1.

    Article  Google Scholar 

  23. S. L. Murov, I. Carmichael and G. L. Hug, Handbook of Photochemistry, 2. ed., Marcel Dekker, Inc., New York, 1993, p. 264.

    Google Scholar 

  24. J. B. Birks, Photophysics of Aromatic Molecules, Wiley-Interscience, London, 1970, p. 84.

    Google Scholar 

  25. S. J. A. Van Gisbergen, J. G. Snijders and E. J. Baerends, Implementation of time-dependent density functional response equations, Comput. Phys. Commun., 1999, 118, 2–3, 119.

    Article  Google Scholar 

  26. R. E. Stratmann, G. E. Scuseria and M. J. Frisch, An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules, J. Chem. Phys., 1998, 109, 19, 8218.

    Article  CAS  Google Scholar 

  27. M. Kasha, Phosphorescence and the role of the triplet state in the electronic excitation of complex molecules, Chem. Rev., 1947, 41, 401.

    Article  CAS  PubMed  Google Scholar 

  28. C. Jamorski, J. B. Foresman, C. Thilgen and H. P. Luthi, Assessment of time-dependent density-functional theory for the calculation of critical features in the absorption spectra of a series of aromatic donor-acceptor systems, J. Chem. Phys., 2002, 116, 8761.

    Article  CAS  Google Scholar 

  29. J. M. Zwier, J. W. Hoeth, A. M. Brouwer, Computational study of radical cations of saturated compounds with sigma-type and pi-type N-N bonds, J. Org. Chem., 2001, 66, 466.

    Article  CAS  PubMed  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle and J. A. Pople, Gaussian 98, Revision A.7, Gaussian, Inc., Pittsburgh, 1998.

    Google Scholar 

  31. R. van Leeuwen, E. J. Baerends, Exchange-correlation potential with correct asymptotic behavior, Phys. Rev. A: At., Mot., Opt. Phys., 1994, 49, 4, 2421.

    Article  Google Scholar 

  32. G. Te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. Van Gisbergen, J. G. Snijders and T. Ziegler, Chemistry with ADF, J. Comput. Chem., 2001, 22, 9, 931.

    Article  Google Scholar 

  33. J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992, 96, 1, 135.

    Article  CAS  Google Scholar 

  34. H. C. Longuet-Higgins, U. Opik, M. L. Pryce and R. A. Sack, Studies of the Jahn-Teller effect. II. The dynamical problem, Proc. R. Soc. London, Ser. A, 1958, 244, 1.

    Article  CAS  Google Scholar 

  35. G. Herzberg, Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules., D. van Nostrand, Princeton, 1966, 166.

    Google Scholar 

  36. H. P. J. M. Dekkers and E. C. M. Kielman-van Luyt, Magnetic circular dichroism of the triphenyl carbenium ion and some symmetrically para-substituted derivatives, Mol. Phys., 1976, 31, 4, 1001.

    Article  CAS  Google Scholar 

  37. A. D. Becke, Density-functional thermochemistry. IV. A new dynamic correlation functional and implications for exact-exchange mixing, J. Chem. Phys., 1996, 104, 3, 1040.

    Article  CAS  Google Scholar 

  38. M. S. De Groot, A. M. Hesselmanm and J. H. v. d. Waals, Paramagnetic resonance in phosphorescent aromatic compounds IV. Ions in orbitally degenerate states, Mol. Phys., 1966, 10, 242.

    Article  Google Scholar 

  39. H. Siegerman, Oxidation and Reduction Half-Wave Potentials of Organic Compounds, in Technique of Electroorganic Synthesis, Techniques of Chemistry, ed. N. L. Weinberg, John Wiley & sons, New York, 1975, p. 667.

    Google Scholar 

  40. O. Hammerich, Anodic Oxidation of Hydrocarbons, in Organic Electrochemistry, eds. O. Hammerich and H. Lund, Marcel Dekker, New York, 2001, p. 471.

    Google Scholar 

  41. G. J. Kavarnos, Fundamentals of Photoinduced Electron Transfer, VCH Publishers, Inc., New York, 1993, 35.

    Google Scholar 

  42. W. E. Jones, Jr. and M. A. Fox, Determination of Excited-State Redox Potentials by Phase-Modulated Voltammetry, J. Phys. Chem., 1994, 98, 19, 5095.

    Article  CAS  Google Scholar 

  43. D. Rehm and A. Weller, Kinetics of fluorescence quenching by electron and H-atom transfer, Isr. J. Chem., 1970, 8, 259.

    Article  CAS  Google Scholar 

  44. M. R. Valentino and M. K. Boyd, Quenching behavior of singlet excited 9-arylxanthylium cations, J. Org. Chem., 1993, 58, 5826.

    Article  CAS  Google Scholar 

  45. To calculate ΔG-values, Dileesh and Gopidas apply the irreversible peak potential of 0.106 V versus SCE

  46. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983, p. 266.

    Book  Google Scholar 

  47. G. Jones II, Photochemistry and Photophysics of Organic Charge Transfer Complexes, in Photoinduced Electron Transfer, part A, eds. M. A. Fox, and M. Chanon, Elsevier, Amsterdam, 1988, p. 245.

    Google Scholar 

  48. D. Baunsgaard, M. Larsen, N. Harrit, J. Frederiksen, R. Wilbrandt and H. Stapelfeldt, Photophysical properties of 2,3,6,7,10,11-hexakis(n-hexylsulfanyl)triphenylene and 2 3,6,7,10,11-hexakis(n-hexylsulfonyl)triphenylene in solution, J. Chem. Soc., Faraday Trans., 1997, 93, 1893.

    Article  CAS  Google Scholar 

  49. B. Kohne, W. Poules and K. Praefcke, Erste flüssigkristalline Hexakis(alkylthio)triphenylene, Chem. Zeit., 1984, 108, 113.

    CAS  Google Scholar 

  50. C. Destrade, M. C. Mondon and J. Malthête, Hexasubstituted triphenylenes A new mesomorphic order, J. Phys. (Paris), 1979, 40, 17.

    Article  Google Scholar 

  51. D. Markovitsi, H. Bengs and H. Ringsdorf, Charge-transfer absorption in doped columnar liquid crystals, J. Chem. Soc., Faraday Trans., 1992, 88, 1275.

    Article  CAS  Google Scholar 

  52. K. Bechgaard, Unpublished work, 2002.

    Google Scholar 

  53. H. A. Benesi and J. H. Hildebrand, A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons, J. Am. Chem. Soc., 1949, 71, 2703.

    Article  CAS  Google Scholar 

  54. D. Markovitsi, F. Rigaut, M. Mouallem and J. Malthete, One-dimensional energy migration in crystalline and columnar liquid-crystalline phases of 2,3,6,7,10,11-Hexa-n-hexyloxytriphenylene, Chem. Phys. Lett., 1987, 135, 236.

    Article  CAS  Google Scholar 

  55. J. Reynisson, G. B. Schuster and N. Harrit, The Interaction between trioxatriangulenium and DNA, to be published

  56. J. Korppi-Tommola and R. W. Yip, Solvent effects on the visible absorption spectrum of crystal violet, Can. J. Chem., 1981, 59, 191.

    Article  CAS  Google Scholar 

  57. R. J. Goldacre and J. N. Phillips, The ionization of basic triphenylmethane dyes, J. Chem. Soc., 1949, 1724.

    Google Scholar 

  58. M. K. Boyd, H. L. Lai and K. Yates, Water quenching behavior of excited 9-xanthylium cations in aqueous sulfuric acid solutions, J. Am. Chem. Soc., 1991, 113, 7294.

    Article  CAS  Google Scholar 

  59. R. E. Minto and P. K. Das, A laser flash photolysis study of photodehydroxylation phenomena of 9-phenylxanthen-9-ol and photobehavior of related intermediates Enhanced electrophilicity of 9-phenylxanthenium cation singlet, J. Am. Chem. Soc., 1989, 111, 8858.

    Article  CAS  Google Scholar 

  60. M. R. Valentino and M. K. Boyd, Ether Quenching of Singlet Excited 9-Arylxanthyl Cations, J. Photochem. Photobiol. A: Chem., 1995, 89, 7.

    Article  CAS  Google Scholar 

  61. J. M. Bedleck, M. R. Valentino and M. K. Boyd, Substituent effects on carbocation photophysics 9-arylxanthyl and 9-arylthioxanthyl carbocations, J. Photochem. Photobiol. A: Chem., 1996, 94, 7.

    Article  Google Scholar 

  62. M. K. Boyd, Photochemistry and photophysics of xanthyl and thioxanthyl carboxcations, Spectrum, 1998, 11, 3, 6.

    Google Scholar 

  63. R. A. McClelland, N. Banait and S. Steenken, Electrophilic reactions of xanthylium carbocations produced by flash photolysis of 9-xanthenols, J. Am. Chem. Soc., 1989, 111, 2929.

    Article  CAS  Google Scholar 

  64. E. M. Arnett, K. Amarnath, N. G. Harvey and J. Cheng, Determination and interrelation of bond heterolysis and homolysis energies in solution, J. Am. Chem. Soc., 1990, 112, 1, 344.

    Article  CAS  Google Scholar 

  65. D. Shukla and P. Wan, Adiabatically photogenerated thioxanthenium cations: Probes of reactivity of nucleophiles toward excited state carbocations in aqueous solution, J. Photochem. Photobrol. A: Chem., 1994, 79, 55.

    Article  CAS  Google Scholar 

  66. R. G. Brown and D. Phillips, Quenching of the first excited singlet state of substituted benzenes by molecular oxygen, Trans. Faraday Soc. 2, 1974, 70, 630.

    Article  CAS  Google Scholar 

  67. H. J. Dauben and J. D. Wilson, Carbonium ion charge-transfer complexes, J. Chem. Soc., Chem. Commun., 1968, 1629.

    Google Scholar 

  68. M. Feldman and B. G. Graves, Solvent shifts in charge-transfer spectra of tropylium complexes, J. Phys. Chem., 1966, 70, 955.

    Article  Google Scholar 

  69. J. Michl and E. W. Thulstrup, Why is azulene blue and anthracene white? A simple MO picture, Tetrahedron, 1976, 32, 2, 205.

    Article  CAS  Google Scholar 

  70. B. W. Laursen, F. C. Krebs, M. F. Nielsen, K. Bechgaard, J. B. Christensen and N. Harrit, 2,6,10-Tris(dialkylamino)-triangulenium ions: Synthesis, structure, and properties of exceptionally stable carbenium ions, J. Am. Chem. Soc., 1998, 120, 12255.

    Article  CAS  Google Scholar 

  71. B. W. Laursen and F. C. Krebs, Synthesis of a triazatriangulenium salt, Angew. Chem., Int. Ed., 2000, 39, 19, 3432.

    Article  CAS  Google Scholar 

  72. M. Lofthagen, R. VernonClark, K. K. Baldridge and J. S. Siegel, Synthesis of trioxatricornan and derivatives Useful keystones for the construction of rigid molecular cavities, J. Org. Chem., 1992, 57, 61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Electronic supplementary information (ESI) available: experimental details and supplementary figures. See: http://www.rsc.org/suppdata/pp/b2/b204954f/

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynisson, J., Wilbrandt, R., Brinck, V. et al. Photophysics of trioxatriangulenium ion. Electrophilic reactivity in the ground state and excited singlet state. Photochem Photobiol Sci 1, 763–773 (2002). https://doi.org/10.1039/b204954f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b204954f

Navigation