Issue 3, 1998

Non-spectral interferences caused by a saline water matrix in quadrupole and high resolution inductively coupled plasma mass spectrometry

Abstract

Non-spectral interferences caused by a sea-water matrix diluted 5-fold on the analyte signals of 24 trace elements in ICP-MS were studied in relation to instrumental parameters. Both quadrupole (ICP-QMS) and double focusing-sector (ICP-SMS) ICP-MS were studied. The parameters were torch injector diameter, sampling depth (i.e., distance from the load coil to the sampler orifice) and rf power. A distinction was made between absolute matrix effects, expressed as integrated signal recovery over a range of nebulizer flow rates (NFR), and matrix effects monitored at a fixed NFR. For the elements studied, it was found that the degree of non-spectral interference depends on both ionization potential (IP) and atomic mass. Generally, the greater the IP and atomic mass of the analyte, the lower the recovery in the presence of the matrix. It appears that, by using optimum plasma settings in ICP-SMS, analyte signal changes may be kept to a moderate level during prolonged introduction of a sea-water matrix. The accuracy of the analytical results can be further improved by using a systematically selected set of internal standard elements.

Article information

Article type
Paper

J. Anal. At. Spectrom., 1998,13, 159-166

Non-spectral interferences caused by a saline water matrix in quadrupole and high resolution inductively coupled plasma mass spectrometry

I. Rodushkin, T. Ruth and D. Klockare, J. Anal. At. Spectrom., 1998, 13, 159 DOI: 10.1039/A706069F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements