Issue 5, 2023

Simultaneous quantification of microplastic particles by non-deuterated (NoD) 1H-qNMR from samples comprising different polymer types

Abstract

Facing microplastic contamination and thereby its impacts on the environment and health will probably be one of the most concerning challenges in our immediate future. Yet, data on these emerging pollutants are still scarce in many aspects leading to the ongoing development and expansion of analytical procedures and approaches. In recent years, despite being used formerly only for qualitative aspects, nuclear magnetic resonance spectroscopy (NMR) was introduced for the quantification of microplastic particles. By the combination of linear regression procedures, internal standards and the integration of proton NMR, the so-called qNMR method allows mass-based quantification of microplastics in a limited amount of time and independent of particle size. Based on this approach, further optimization through the simultaneous dissolution and quantification of multiple polymers is investigated. Individual requirements, known issues and considerations will be demonstrated along with additional possibilities for five polymers: polystyrene (PS), butadiene rubber (BR), polyvinylchloride (PVC), polyethylene terephthalate (PET) and polyamide (PA). The applicability of homopolymer-based calibrations is demonstrated for both the quantification of multiple homopolymers dissolved in a shared solvent system and the quantification of copolymers; for example, a styrene–butadiene copolymer (SBR). Linearities and limits of detection and quantification as well as precision and accuracy comparable to those of solely measured microplastic particles are achieved. The improvement significantly reduces the preparation and measurement time in combination with lowered costs. In addition, enhanced reliability was achieved by implementing hexamethyldisiloxane (HMDSO) as an internal standard in NoD measurements, replacing dichloromethane (DCM).

Graphical abstract: Simultaneous quantification of microplastic particles by non-deuterated (NoD) 1H-qNMR from samples comprising different polymer types

Supplementary files

Article information

Article type
Paper
Submitted
25 Oct 2022
Accepted
20 Jan 2023
First published
08 Feb 2023

Analyst, 2023,148, 1151-1161

Simultaneous quantification of microplastic particles by non-deuterated (NoD) 1H-qNMR from samples comprising different polymer types

M. Günther and W. Imhof, Analyst, 2023, 148, 1151 DOI: 10.1039/D2AN01751B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements