Issue 15, 2022

ZnO/ZnFe2O4 nanocomposite-based electrochemical nanosensors for the detection of furazolidone in pork and shrimp samples: exploring the role of crystallinity, phase ratio, and heterojunction formation

Abstract

In this study, we have investigated the influence of crystallinity, phase ratio, and heterojunction formation on the sensing performance of ZnO/ZnFe2O4 (ZnO/ZFO) nanocomposite-based electrochemical sensors for the detection of furazolidone (FZD) antibiotic drug. Results obtained show that the crystallinity and phase ratio of ZnO/ZFO nanocomposites have decisive effects on their electron transfer and active site density. Tuning the crystallinity and ZnO content of ZnO/ZFO nanocomposites is an effective way to enhance the FZD electrochemical sensing performance. Findings from this research suggested that the formation of ZnO/ZFO heterojunction could significantly improve their electrochemical responses for FZD due to arising of the internal electric field and redistribution of Zn2+, Fe3+ cations. Under optimized conditions, the ZnO/ZFO-2-based FZD electrochemical sensor reached an electrochemical sensitivity of 0.78 μA μM−1 cm−2 with a LOD of 0.65 μM in the detection range of 1–100 μM. In addition, all these ZnO/ZFO nanocomposites-based electrochemical sensors offer satisfactory repeatability, selectivity, long-term stability, and practical feasibility in pork and shrimp samples. The insights obtained will benefit the future design of ZnFe2O4 nanomaterial-based high-performance electrochemical sensors for monitoring residual antibiotics in real food samples.

Graphical abstract: ZnO/ZnFe2O4 nanocomposite-based electrochemical nanosensors for the detection of furazolidone in pork and shrimp samples: exploring the role of crystallinity, phase ratio, and heterojunction formation

Supplementary files

Article information

Article type
Paper
Submitted
08 Dec 2021
Accepted
11 Mar 2022
First published
11 Mar 2022

New J. Chem., 2022,46, 7090-7102

ZnO/ZnFe2O4 nanocomposite-based electrochemical nanosensors for the detection of furazolidone in pork and shrimp samples: exploring the role of crystallinity, phase ratio, and heterojunction formation

N. T. Anh, N. N. Huyen, N. X. Dinh, L. K. Vinh, L. M. Tung, N. T. Vinh, N. V. Quy, V. D. Lam and A. Le, New J. Chem., 2022, 46, 7090 DOI: 10.1039/D1NJ05837A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements