Skip to main content

Advertisement

Log in

Conjugating biomaterials with photosensitizes: advancers and perspectives for photodynamic antimicrobial chemotherapy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Antimicrobial resistance is threatening to overshadow last century’s medical advances. Previously eradicated infectious diseases are now resurgent as multi-drug resistant strains, leading to expensive, toxic and, in some cases, ineffective antimicrobial treatments. Given this outlook, researchers are willing to investigate novel antimicrobial treatments that may be able to deal with antimicrobial resistance, namely photodynamic therapy (PDT). PDT relies on the generation of toxic reactive oxygen species (ROS) in the presence of light and a photosensitizer (PS) molecule. PDT has been known for almost a century, but most of its applications have been directed towards the treatment of cancer and topical diseases. Unlike classical antimicrobial chemotherapy treatments, photodynamic antimicrobial chemotherapy (PACT) has a non-target specific mechanism of action, based on the generation of ROS, working against cellular membranes, walls, proteins, lipids and nucleic acids. This non-specific mechanism diminishes the chances of bacteria developing resistance. However, PSs usually are large molecules, prone to aggregation, diminishing their efficiency. This review will report the development of materials obtained from natural sources, as delivery systems for photosensitizing molecules against microorganisms. The present work emphasizes on the biological results rather than on the synthesis routes to prepare the conjugates. Also, it discusses the current state of the art, providing our perspective on the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Z. Baharoglu, G. Garriss and D. Mazel, Multiple Pathways of Genome Plasticity Leading to Development of Antibiotic Resistance Antibiotics, 2013, 2, 288–315.

    Article  CAS  Google Scholar 

  2. A. Tran-Dien, S. Le Hello, C. Bouchier and F. X. Weill, Early transmissible ampicillin resistance in zoonotic Salmonella enterica serotype Typhimurium in the late 1950s: a retrospective, whole-genome sequencing study Lancet Infect. Dis., 2018, 18, 207–214.

    Article  Google Scholar 

  3. D. Lyddiard, G. L. Jones and B. W. Greatrex, Keeping it simple: Lessons from the golden era of antibiotic discovery FEMS Microbiol. Lett., 2016, 363, 1–3.

    Article  Google Scholar 

  4. J. Davies, Antibiotic resistance and the golden age of microbiology Upsala J. Med. Sci., 2014, 119, 65–67.

    Article  Google Scholar 

  5. CDC, About Antibiotic Resistance|Antibiotic/Antimicrobial Resistance|CDC, https://www.cdc.gov/drugresistance/about.html/drugresistance/about.html, (accessed 6 January 2020).

  6. L. B. Rice, Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE, J. Infect. Dis., 2008, 197, 1079–1081.

  7. Z. F. Udwadia, S. Jain, C. Rodrigues and A. Mehta, XDR tuberculosis in India: what’s in a name?, Lancet Infect. Dis., 2007, 7, 441–442.

  8. M. C. Fisher, N. J. Hawkins, D. Sanglard and S. J. Gurr, Worldwide emergence of resistance to antifungal drugs challenges human health and food security, Science, 2018, 360, 739–742.

  9. H. P. de Koning, Drug resistance in protozoan parasites, Emerging Top. Life Sci., 2017, 1, 627–632.

  10. O’Neill Commission, Tackling Drug-Resistant Infections Globally: Final Report and Recommendations the Review on Antimicrobial Resistance Chaired By Jim O’Neill.

  11. M. Chan, Global Action Plan on Antimicrobial Resistance, Geneva, 2015.

  12. S. Callaghan and M. O. Senge, The good, the bad, and the ugly – controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy, Photochem. Photobiol. Sci., 2018, 17, 1490–1514.

  13. L. B. Josefsen and R. W. Boyle, Photodynamic Therapy and the Development of Metal-Based Photosensitisers, Met.-Based Drugs, 2008, 2008, 1–23.

  14. C. Yang, Y. Chen, W. Guo, Y. Gao, C. Song, Q. Zhang, N. Zheng, X. Han and C. Guo, Bismuth Ferrite-Based Nanoplatform Design: An Ablation Mechanism Study of Solid Tumor and NIR-Triggered Photothermal/ Photodynamic Combination Cancer Therapy, Adv. Funct. Mater., 2018, 28, 1–13.

  15. F. Dandash, D. Y. Léger, C. Fidanzi-Dugas, S. Nasri, F. Brégier, R. Granet, W. Karam, M. Diab-Assaf, V. Sol and B. Liagre, In vitro anticancer activity of new gold(III) porphyrin complexes in colon cancer cells, J. Inorg. Biochem., 2017, 177, 27–38.

  16. P. Figueiredo, K. Lintinen, A. Kiriazis, V. Hynninen, Z. Liu, T. Bauleth-Ramos, A. Rahikkala, A. Correia, T. Kohout, B. Sarmento, J. Yli-Kauhaluoma, J. Hirvonen, O. Ikkala, M. A. Kostiainen and H. A. Santos, In vitro evaluation of biodegradable lignin-based nanoparticles for drug delivery and enhanced antiproliferation effect in cancer cells, Biomaterials, 2017, 121, 97–108.

  17. European Patent Office, Eur. Pat. Off, WO 2016/178191, 2016.

  18. R. Baskaran, J. Lee and S.-G. Yang, Clinical development of photodynamic agents and therapeutic applications, Biomater. Res., 2018, 22, 1–8.

  19. C. Frochot and S. Mordon, Update of the situation of clinical photodynamic therapy in Europe in the 2003–2018 period, J. Porphyrins Phthalocyanines, 2019, 23, 347–357.

  20. D. van Straten, V. Mashayekhi, H. de Bruijn, S. Oliveira and D. Robinson, Oncologic Photodynamic Therapy: Basic Principles, Current Clinical Status and Future Directions, Cancers, 2017, 9, 19.

  21. J. M. Dąbrowski and L. G. Arnaut, Photodynamic therapy (PDT) of cancer: from local to systemic treatment, Photochem. Photobiol. Sci., 2015, 14, 1765–1780.

  22. Goodman & Gilman’s The Pharmaceutical Basis of Therapeutics, ed. L. L. Brunton, B. A. Chabner and B. C. Knollmann, McGraw Hill Medical, New York, 12th edn, 2011.

  23. M. Wainwright, T. Maisch, S. Nonell, K. Plaetzer, A. Almeida, G. P. Tegos and M. R. Hamblin, Photoantimicrobials—are we afraid of the light?, Lancet Infect. Dis., 2017, 17, e49–e55.

  24. T. G. S. Denis, L. Huang, T. Dai and M. R. Hamblin, Analysis of the bacterial heat shock response to photodynamic therapy-mediated oxidative stress, Photochem. Photobiol., 2011, 87, 707–713.

  25. M. Tanaka, P. Mroz, T. Dai, L. Huang, Y. Morimoto, M. Kinoshita, Y. Yoshihara, K. Nemoto, N. Shinomiya, S. Seki and M. R. Hamblin, Photodynamic Therapy Can Induce a Protective Innate Immune Response against Murine Bacterial Arthritis via Neutrophil Accumulation, PLoS One, 2012, 7, e39823.

  26. L. G. Arnaut, Design of porphyrin-based photosensitizers for photodynamic therapy, Elsevier Inc., 1st edn, 2011, vol. 63.

  27. D. Liu, L. Li, J. Chen, Z. Chen, L. Jiang, C. Yuan and M. Huang, Dissociation of zinc phthalocyanine aggregation on bacterial surface is key for photodynamic antimicrobial effect, J. Porphyrins Phthalocyanines, 2018, 22, 1–10.

  28. A. Radomski, P. Jurasz, D. Alonso-Escolano, M. Drews, M. Morandi, T. Malinski and M. W. Radomski, Nanoparticle-induced platelet aggregation and vascular thrombosis, Br. J. Pharmacol., 2005, 146, 882–893.

  29. K. Ogawa, M. Sone, T. Toyoda, Y. Mizuta, J. Akagi and Y.-M. Cho, Size-dependent acute toxicity of silver nanoparticles in mice, J. Toxicol. Pathol., 2017, 31, 73–80.

  30. A. K. Mohanty, M. Misra, L. T. Drzal, S. E. Selke, B. R. Harte and G. Hinrichsen, in Natural Fibers, Biopolymers, and Biocomposites, ed. A. K. Mohanty, M. Misra and L. T. Drzal, CRC Press, Boca Raton, 2005, p. 896.

  31. R. Jia, W. Tian, H. Bai, J. Zhang, S. Wang and J. Zhang, Sunlight-Driven Wearable and Robust Antibacterial Coatings with Water-Soluble Cellulose-Based Photosensitizers, Adv. Healthcare Mater., 2019, 8, 1801591.

  32. M. Q. Mesquita, C. J. Dias, M. G. P. M. S. Neves, A. Almeida and M. F. Faustino, Revisiting Current Photoactive Materials for Antimicrobial Photodynamic Therapy, Molecules, 2018, 23, 2424.

  33. V. Almeida-Marrero, E. van de Winckel, E. Anaya-Plaza, T. Torres and A. de la Escosura, Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management, Chem. Soc. Rev., 2018, 47, 7369–7400.

  34. D. Klemm, B. Heublein, H.-P. Fink and A. Bohn, Cellulose: Fascinating Biopolymer and Sustainable Raw Material, Angew. Chem., Int. Ed., 2005, 44, 3358–3393.

  35. V. Decraene, J. Pratten and M. Wilson, Cellulose Acetate Containing Toluidine Blue and Rose Bengal Is an Effective Antimicrobial Coating when Exposed to White Light, Appl. Environ. Microbiol., 2006, 72, 4436–4439.

  36. M. Sachar, K. E. Anderson and X. Ma, Protoporphyrin IX: the Good, the Bad, and the Ugly, J. Pharmacol. Exp. Ther., 2016, 356, 267–275.

  37. M. Krouit, R. Granet, P. Branland, B. Verneuil and P. Krausz, New photoantimicrobial films composed of porphyrinated lipophilic cellulose esters, Bioorg. Med. Chem. Lett., 2006, 16, 1651–1655.

  38. M. Krouit, R. Granet and P. Krausz, Photobactericidal films from porphyrins grafted to alkylated cellulose – synthesis thesis and bactericidal properties, Eur. Polym. J., 2009, 45, 1250–1259.

  39. C. Ringot, V. Sol, M. Barrière, N. Saad, P. Bressollier, R. Granet, P. Couleaud, C. Frochot and P. Krausz, Triazinyl Porphyrin-Based Photoactive Cotton Fabrics: Preparation, Characterization, and Antibacterial Activity, Biomacromolecules, 2011, 12, 1716–1723.

  40. C. Ringot, N. Saad, R. Granet, P. Bressollier, V. Sol and P. Krausz, Meso -functionalized aminoporphyrins as efficient agents for photo-antibacterial surfaces, J. Porphyrins Phthalocyanines, 2010, 14, 925–931.

  41. J.-P. Mbakidi, K. Herke, S. Alvès, V. Chaleix, R. Granet, P. Krausz, S. Leroy-Lhez, T.-S. Ouk and V. Sol, Synthesis and photobiocidal properties of cationic porphyringrafted paper, Carbohydr. Polym., 2013, 91, 333–338.

  42. J. K. Nzambe Ta keki, T.-S. Ouk, R. Zerrouki, P.-A. Faugeras, V. Sol and F. Brouillette, Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers, Mater. Sci. Eng., C, 2016, 62, 61–67.

  43. B. L. Carpenter, F. Scholle, H. Sadeghifar, A. J. Francis, J. Boltersdorf, W. W. Weare, D. S. Argyropoulos, P. A. Maggard and R. A. Ghiladi, Synthesis, Characterization, and Antimicrobial Efficacy of Photomicrobicidal Cellulose Paper, Biomacromolecules, 2015, 16, 2482–2492.

  44. B. L. Carpenter, E. Feese, H. Sadeghifar, D. S. Argyropoulos and R. A. Ghiladi, Porphyrin-Cellulose Nanocrystals: A Photobactericidal Material that Exhibits Broad Spectrum Antimicrobial Activity, Photochem. Photobiol., 2012, 88, 527–536.

  45. E. Feese, H. Sadeghifar, H. S. Gracz, D. S. Argyropoulos and R. A. Ghiladi, Photobactericidal Porphyrin-Cellulose Nanocrystals: Synthesis, Characterization, and Antimicrobial Properties, Biomacromolecules, 2011, 12, 3528–3539.

  46. D. R. Alvarado, D. S. Argyropoulos, F. Scholle, B. S. T. Peddinti and R. A. Ghiladi, A facile strategy for photoactive nanocellulose-based antimicrobial materials, Green Chem., 2019, 21, 3424–3435.

  47. J. Dong, R. A. Ghiladi, Q. Wang, Y. Cai and Q. Wei, Protoporphyrin-IX conjugated cellulose nanofibers that exhibit high antibacterial photodynamic inactivation efficacy, Nanotechnology, 2018, 29, 265601.

  48. J. Dong, R. A. Ghiladi, Q. Wang, Y. Cai and Q. Wei, Protoporphyrin IX conjugated bacterial cellulose via diamide spacer arms with specific antibacterial photodynamic inactivation against Escherichia coli, Cellulose, 2018, 25, 1673–1686.

  49. C. Ringot, N. Saad, F. Brégier, P. Bressollier, E. Poli, V. Chaleix, T. S. Ouk and V. Sol, Antibacterial activity of a photosensitive hybrid cellulose fabric, Photochem. Photobiol. Sci., 2018, 17, 1780–1786.

  50. L. Li, S. Kromann, J. E. Olsen, S. W. Svenningsen and R. H. Olsen, Insight into synergetic mechanisms of tetracycline and the selective serotonin reuptake inhibitor, sertraline, in a tetracycline-resistant strain of Escherichia coli, J. Antibiot., 2017, 70, 944–953.

  51. J. Chen, W. Wang, P. Hu, D. Wang, F. Lin, J. Xue, Z. Chen, Z. Iqbal and M. Huang, Dual antimicrobial actions on modified fabric leads to inactivation of drug-resistant bacteria, Dyes Pigm., 2017, 140, 236–243.

  52. J. Zhuo and G. Sun, Antimicrobial Functions on Cellulose Materials Introduced by Anthraquinone Vat Dyes, ACS Appl. Mater. Interfaces, 2013, 5, 10830–10835.

  53. R. Rahal, M. Le Bechec, R. Guyoneaud, T. Pigot, H. Paolacci and S. Lacombe, Bactericidal activity under UV and visible light of cotton fabrics coated with anthraquinone-sensitized TiO2, Catal. Today, 2013, 209, 134–139.

  54. Y. Habibi, L. A. Lucia and O. J. Rojas, Cellulose Nanocrystals : Chemistry, Self-Assembly, and Applications, Chem. Rev., 2010, 110, 3479–3500.

  55. F. Le Guern, T.-S. Ouk, K. Grenier, N. Joly, V. Lequart and V. Sol, Enhancement of photobactericidal activity of chlorin-e6-cellulose nanocrystals by covalent attachment of polymyxin B, J. Mater. Chem. B, 2017, 5, 6953–6962.

  56. M. R. Hamblin and T. Dai, Can surgical site infections be treated by photodynamic therapy?, Photodiagn. Photodyn. Ther., 2010, 7, 134–136.

  57. E. Anaya-Plaza, E. van de Winckel, J. Mikkilä, J. M. Malho, O. Ikkala, O. Gulías, R. Bresolí-Obach, M. Agut, S. Nonell, T. Torres, M. A. Kostiainen and A. de la Escosura, Photoantimicrobial Biohybrids by Supramolecular Immobilization of Cationic Phthalocyanines onto Cellulose Nanocrystals, Chem. – Eur. J., 2017, 23, 4320–4326.

  58. G. Tiwari, R. Tiwari and A. Rai, Cyclodextrins in delivery systems: Applications, J. Pharm. BioAllied Sci., 2010, 2, 72.

  59. G. Crini, Review: A history of cyclodextrins, Chem. Rev., 2014, 114, 10940–10975.

  60. E. Fenyvesi, EMA Review on Cyclodextrins as Excipients, CycloLab – Cyclodext. News, 2015, vol. 29, pp. 1–17.

  61. S. Buedenbender and G. E. Schulz, Structural Base for Enzymatic Cyclodextrin Hydrolysis, J. Mol. Biol., 2009, 385, 606–617.

  62. S. J. Mora, M. P. Cormick, M. E. Milanesio and E. N. Durantini, The photodynamic activity of a novel porphyrin derivative bearing a fluconazole structure in different media and against Candida albicans, Dyes Pigm., 2010, 87, 234–240.

  63. M. Cozzolino, P. Delcanale, C. Montali, M. Tognolini, C. Giorgio, M. Corrado, L. Cavanna, P. Bianchini, A. Diaspro, S. Abbruzzetti and C. Viappiani, Enhanced photosensitizing properties of protein bound curcumin, Life Sci., 2019, 233, 116710.

  64. A. E. Kamel, M. Fadel and D. Louis, Curcumin-loaded nanostructured lipid carriers prepared using Peceol™ and olive oil in photodynamic therapy: development and application in breast cancer cell line, Int. J. Nanomed., 2019, 14, 5073–5085.

  65. K. O. Wikene, A. B. Hegge, E. Bruzell and H. H. Tønnesen, Formulation and characterization of lyophilized curcumin solid dispersions for antimicrobial photodynamic therapy (aPDT): studies on curcumin and curcuminoids LII, Drug Dev. Ind. Pharm., 2014, 41, 969–977.

  66. A. B. Hegge, M. Vukicevic, E. Bruzell, S. Kristensen and H. H. Tønnesen, Solid dispersions for preparation of phototoxic supersaturated solutions for antimicrobial photodynamic therapy (aPDT), Eur. J. Pharm. Biopharm., 2013, 83, 95–105.

  67. M. A. Castriciano, R. Zagami, M. P. Casaletto, B. Martel, M. Trapani, A. Romeo, V. Villari, M. T. Sciortino, L. Grasso, S. Guglielmino, L. M. Scolaro and A. Mazzaglia, Poly(carboxylic acid)-Cyclodextrin/Anionic Porphyrin Finished Fabrics as Photosensitizer Releasers for Antimicrobial Photodynamic Therapy, Biomacromolecules, 2017, 18, 1134–1144.

  68. Y. Gao, J. Wang, D. Hu, Y. Deng, T. Chen, Q. Jin and J. Ji, Bacteria-Targeted Supramolecular Photosensitizer Delivery Vehicles for Photodynamic Ablation Against Biofilms, Macromol. Rapid Commun., 2019, 40, 1800763.

  69. F. J. R. Alexandrino, E. M. Bezerra, R. F. Da Costa, L. R. L. Cavalcante, F. A. M. Sales, T. S. Francisco, L. K. A. Rodrigues, D. H. A. de Brito, N. M. P. S. Ricardo, S. N. Costa, P. de Lima-Neto, I. L. Barroso-Neto, E. W. S. Caetano and V. N. Freire, Rose Bengal incorporated to α-cyclodextrin microparticles for photodynamic therapy against the cariogenic microorganism Streptococcus mutans, Photodiagn. Photodyn. Ther., 2019, 25, 111–118.

  70. D. Elieh-Ali-Komi and M. R. Hamblin, Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials, Int. J. Adv. Res., 2016, 4, 411–427.

  71. T. Tsai, H.-F. Chien, T.-H. Wang, C.-T. Huang, Y.-B. Ker and C.-T. Chen, Chitosan Augments Photodynamic Inactivation of Gram-Positive and Gram-Negative Bacteria, Antimicrob. Agents Chemother., 2011, 55, 1883–1890.

  72. H.-F. Chien, C.-P. Chen, Y.-C. Chen, P.-H. Chang, T. Tsai and C.-T. Chen, The Use of Chitosan to Enhance Photodynamic Inactivation against Candida albicans and Its Drug-Resistant Clinical Isolates, Int. J. Mol. Sci., 2013, 14, 7445–7456.

  73. C. P. Chen, C. T. Chen and T. Tsai, Chitosan nanoparticles for antimicrobial photodynamic inactivation: Characterization and in vitro investigation, Photochem. Photobiol., 2012, 88, 570–576.

  74. C. H. Lin, H. F. Chien, M. H. Lin, C. P. Chen, M. Shen and C. T. Chen, Chitosan inhibits the rehabilitation of damaged microbes induced by photodynamic inactivation, Int. J. Mol. Sci., 2018, 19, 2598.

  75. S. S. Choi, H. K. Lee and H. S. Chae, Synergistic in vitro photodynamic antimicrobial activity of methylene blue and chitosan against Helicobacter pylori 26695, Photodiagn. Photodyn. Ther., 2014, 11, 526–532.

  76. S. Choi, H. Lee, J. Yu and H. Chae, In vitro augmented photodynamic bactericidal activity of tetracycline and chitosan against Clostridium difficile KCTC5009 in the planktonic cultures, J. Photochem. Photobiol., B, 2015, 153, 7–12.

  77. F. Camacho-Alonso, E. Julián-Belmonte, F. Chiva-García and Y. Martínez-Beneyto, Bactericidal Efficacy of Photodynamic Therapy and Chitosan in Root Canals Experimentally Infected with Enterococcus faecalis : An In Vitro Study, Photomed. Laser Surg., 2017, 35, 184–189.

  78. A. Shrestha and A. Kishen, Polycationic Chitosan-Conjugated Photosensitizer for Antibacterial Photodynamic Therapy, Photochem. Photobiol., 2012, 88, 577–583.

  79. A. Shrestha, M. R. Hamblin and A. Kishen, Photoactivated rose bengal functionalized chitosan nanoparticles produce antibacterial/biofilm activity and stabilize dentincollagen, Nanomedicine, 2014, 10, 491–501.

  80. A. Shrestha and A. Kishen, Antibiofilm Efficacy of Photosensitizer-functionalized Bioactive Nanoparticles on Multispecies Biofilm, J. Endod., 2014, 40, 1604–1610.

  81. A. Shrestha, M. R. Hamblin and A. Kishen, Characterization of a conjugate between rose bengal and chitosan for targeted antibiofilm and tissue stabilization effects as a potential treatment of infected dentin, Antimicrob. Agents Chemother., 2012, 56, 4876–4884.

  82. A. Shrestha and A. Kishen, The Effect of Tissue Inhibitors on the Antibacterial Activity of Chitosan Nanoparticles and Photodynamic Therapy, J. Endod., 2012, 38, 1275–1278.

  83. A. Persadmehr, C. D. Torneck, D. G. Cvitkovitch, V. Pinto, I. Talior, M. Kazembe, S. Shrestha, C. A. McCulloch and A. Kishen, Bioactive Chitosan Nanoparticles and Photodynamic Therapy Inhibit Collagen Degradation In Vitro, J. Endod., 2014, 40, 703–709.

  84. A. Shrestha, M. Cordova and A. Kishen, Photoactivated Polycationic Bioactive Chitosan Nanoparticles Inactivate Bacterial Endotoxins, J. Endod., 2015, 41, 686–691.

  85. A. Nagahara, A. Mitani, M. Fukuda, H. Yamamoto, K. Tahara, I. Morita, C.-C. Ting, T. Watanabe, T. Fujimura, K. Osawa, S. Sato, S. Takahashi, Y. Iwamura, T. Kuroyanagi, Y. Kawashima and T. Noguchi, Antimicrobial photodynamic therapy using a diode laser with a potential new photosensitizer, indocyanine green-loaded nanospheres, may be effective for the clearance of Porphyromonas gingivalis, J. Periodontal Res., 2013, 48, 591–599.

  86. M. Pourhajibagher, A. R. Rokn, M. Rostami-Rad, H. R. Barikani and A. Bahador, Monitoring of Virulence Factors and Metabolic Activity in Aggregatibacter Actinomycetemcomitans Cells Surviving Antimicrobial Photodynamic Therapy via Nano-Chitosan Encapsulated Indocyanine Green, Front. Phys., 2018, 6, 1–10.

  87. E. Darabpour, N. Kashef and S. Mashayekhan, Chitosan nanoparticles enhance the efficiency of methylene bluemediated antimicrobial photodynamic inactivation of bacterial biofilms: An in vitro study, Photodiagn. Photodyn. Ther., 2016, 14, 211–217.

  88. K. A. D. F. Castro, N. M. M. Moura, A. Fernandes, M. A. F. Faustino, M. M. Q. Simões, J. A. S. Cavaleiro, S. Nakagaki, A. Almeida, Â. Cunha, A. J. D. Silvestre, C. S. R. Freire, R. J. B. Pinto and M. G. P. M. S. Neves, Control of Listeria innocua biofilms by biocompatible photodynamic antifouling chitosan based materials, Dyes Pigm., 2017, 137, 265–276.

  89. I. Buchovec, V. Lukseviciute, A. Marsalka, I. Reklaitis and Z. Luksiene, Effective photosensitization-based inactivation of Gram (−) food pathogens and molds using the chlorophyllin–chitosan complex: towards photoactive edible coatings to preserve strawberries, Photochem. Photobiol. Sci., 2016, 15, 506–516.

  90. L. Sun, W. Jiang, H. Zhang, Y. Guo, W. Chen, Y. Jin, H. Chen, K. Du, H. Dai, J. Ji and B. Wang, Photosensitizer-Loaded Multifunctional Chitosan Nanoparticles for Simultaneous in Situ Imaging, Highly Efficient Bacterial Biofilm Eradication, and Tumor Ablation, ACS Appl. Mater. Interfaces, 2019, 11, 2302–2316.

  91. H. Y. Kong and J. Byun, Nucleic Acid Aptamers: New Methods for Selection, Stabilization, and Application in Biomedical Science, Biomol. Ther., 2013, 21, 423–434.

  92. J. Wang, H. Wu, Y. Yang, R. Yan, Y. Zhao, Y. Wang, A. Chen, S. Shao, P. Jiang and Y. Q. Li, Bacterial speciesidentifiable magnetic nanosystems for early sepsis diagnosis and extracorporeal photodynamic blood disinfection, Nanoscale, 2018, 10, 132–141.

  93. T. Ignatova-Ivanova, in Immunotherapy - Myths, Reality, Ideas, Future, ed. K. Metodiev, InTech, 2017, vol. i, pp. 345–354.

  94. C. Li, L. Zhou, H. Yang, R. Lv, P. Tian, X. Li, Y. Zhang, Z. Chen and F. Lin, Self-Assembled Exopolysaccharide Nanoparticles for Bioremediation and Green Synthesis of Noble Metal Nanoparticles, ACS Appl. Mater. Interfaces, 2017, 9, 22808–22818.

  95. C. Li, F. Lin, W. Sun, F.-G. Wu, H. Yang, R. Lv, Y.-X. Zhu, H.-R. Jia, C. Wang, G. Gao and Z. Chen, Self-Assembled Rose Bengal-Exopolysaccharide Nanoparticles for Improved Photodynamic Inactivation of Bacteria by Enhancing Singlet Oxygen Generation Directly in the Solution, ACS Appl. Mater. Interfaces, 2018, 10, 16715–16722.

  96. C. Zhang, P. L. Show and S. H. Ho, Progress and perspective on algal plastics – A critical review, Bioresour. Technol., 2019, 289, 121700.

  97. A. B. Hegge, T. Andersen, J. E. Melvik, E. Bruzell, S. Kristensen and H. H. Tønnesen, Formulation and Bacterial Phototoxicity of Curcumin Loaded Alginate Foams for Wound Treatment Applications: Studies on Curcumin and Curcuminoides XLII, J. Pharm. Sci., 2011, 100, 174–185.

  98. R. W. Hesselink and J. B. C. Findlay, Expression, characterization and ligand specificity of lipocalin-1 interacting membrane receptor (LIMR), Mol. Membr. Biol., 2013, 30, 327–337.

  99. B. Rodríguez-Amigo, P. Delcanale, G. Rotger, J. Juárez-Jiménez, S. Abbruzzetti, A. Summer, M. Agut, F. J. Luque, S. Nonell and C. Viappiani, The complex of hypericin with β-lactoglobulin has antimicrobial activity with potential applications in dairy industry, J. Dairy Sci., 2015, 98, 89–94.

  100. M. S. Singhvi, S. S. Zinjarde and D. V. Gokhale, Polylactic acid: synthesis and biomedical applications, J. Appl. Microbiol., 2019, 127, 1612–1626.

  101. J. K. Trigo Gutierrez, G. C. Zanatta, A. L. M. Ortega, M. I. C. Balastegui, P. V. Sanitá, A. C. Pavarina, P. A. Barbugli and E. G. de O. Mima, Encapsulation of curcumin in polymeric nanoparticles for antimicrobial Photodynamic Therapy, PLoS One, 2017, 12, e0187418.

  102. Q. Wu, Y. Wang and G. Q. Chen, Medical application of microbial biopolyesters polyhydroxyalkanoates, Artif. Cells, Blood Substitutes, Biotechnol., 2009, 37, 1–12.

  103. S. G. Karpova, A. A. Ol’khov, N. G. Shilkina, P. M. Tyubaeva, A. A. Popov and A. L. Iordanskii, Investigation of biodegradable composites of poly(3-hydroxybutyrate) ultrathin fibers modified by a complex of iron(III) with tetraphenylporphyrin, Polym. Sci., Ser. A, 2017, 59, 342–351.

  104. A. A. Ol’khov, S. G. Karpova, A. V. Lobanov, P. M. Tyubaeva, L. I. Gol’tsova, E. L. Kucherenko and A. L. Iordanskii, Ultrathin Poly(3-hydroxybutyrate) Fibers Modified with the Iron(III) Complex of Tetraphenylporphyrin, Fibre Chem., 2017, 49, 217–221.

  105. S. Beisl, A. Friedl and A. Miltner, Lignin from Micro- to Nanosize: Applications, Int. J. Mol. Sci., 2017, 18, 2367.

  106. M. Witzler, A. Alzagameem, M. Bergs, B. El Khaldi-Hansen, S. E. Klein, D. Hielscher, B. Kamm, J. Kreyenschmidt, E. Tobiasch and M. Schulze, Ligninderived biomaterials for drug release and tissue engineering, Molecules, 2018, 23, 1–22.

  107. M. H. Sipponen, H. Lange, C. Crestini, A. Henn and M. Österberg, Lignin for Nano- and Microscaled Carrier Systems: Applications, Trends, and Challenges ChemSusChem, 2019, 12, 2038.

    Article  CAS  Google Scholar 

  108. D. M. Rocca, J. P. Vanegas, K. Fournier, M. C. Becerra, J. C. Scaiano and A. E. Lanterna, Biocompatibility and photo-induced antibacterial activity of lignin-stabilized noble metal nanoparticles RSC Adv., 2018, 8, 40454–40463.

    Article  CAS  Google Scholar 

  109. G. Marchand, C. A. Calliste, R. M. Williams, C. McLure, S. Leroy-Lhez and N. Villandier, Acetylated Lignins: A Potential Bio-Sourced Photosensitizer ChemistrySelect, 2018, 3, 5512–5516.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Leroy-Lhez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado-Carmona, N., Ouk, TS., Calvete, M.J.F. et al. Conjugating biomaterials with photosensitizes: advancers and perspectives for photodynamic antimicrobial chemotherapy. Photochem Photobiol Sci 19, 445–461 (2020). https://doi.org/10.1039/c9pp00398c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c9pp00398c

Navigation