Skip to main content
Log in

The absorption spectrum of cis-azobenzene

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Azobenzene is a prototypical photochromic molecule existing in two isomeric forms, which has numerous photochemical applications that rely on a precise knowledge of the molar absorption coefficients (ɛ). Careful analysis revealed that the previously reported absorption spectra of the “pure” isomers were in fact mutually contaminated by small amounts of the other isomer. Therefore, the absorption spectra of both trans- and cis-azobenzene in methanol were re-determined at temperatures of 5-45 °C. The thermodynamically more stable trans-azobenzene was prepared by warming the solution in the dark. To obtain the spectrum of cis-azobenzene three methods were used, which gave consistent results within the limits of error. The method based on the subtraction of derivative spectra coupled with a global analysis of the spectra recorded during thermal cis-trans isomerization is shown to give slightly more reliable results than the method using isomeric ratios determined by 1H-NMR. The described methods are readily generalizable to other azobenzene derivatives and to other photochromic systems. The practical implication of the re-determined ɛ values is demonstrated by a very high precision of spectrophotometric species analysis in azobenzene isomeric mixtures. The new ɛ values imply that the previously reported quantum yields must be revised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Hartley, The Cis-form of Azobenzene, Nature, 1937, 140, 281.

    Article  CAS  Google Scholar 

  2. S. Tanaka, S. Itoh and N. Kurita, Possibility of nonequili- brium isomerization of azobenzene triggered by vibrational excitations, Chem. Phys. Lett., 2002, 362, 467–475.

    Article  CAS  Google Scholar 

  3. T. Cusati, G. Granucci and M. Persico, Photodynamics and Time-Resolved Fluorescence of Azobenzene in Solution: A Mixed Quantum-Classical Simulation, J. Am. Chem. Soc., 2011, 133, 5109–5123.

    Article  CAS  Google Scholar 

  4. L. Duarte, R. Fausto and I. Reva, Structural and spectro- scopic characterization of E- and Z-isomers of azobenzene, Phys. Chem. Chem. Phys., 2014, 16, 16919.

    Article  CAS  Google Scholar 

  5. L. Duarte, L. Khriachtchev, R. Fausto and I. Reva, Photoisomerization of azobenzenes isolated in cryogenic matrices, Phys. Chem. Chem. Phys., 2016, 18, 16802–16811.

    Article  CAS  Google Scholar 

  6. H. M. D. Bandara and S. C. Burdette, Photoisomerization in different classes of azobenzene, Chem. Soc. Rev., 2012, 41, 1809–1825.

    Article  CAS  Google Scholar 

  7. J. Casellas, M. J. Bearpark and M. Reguero, Excited-State Decay in the Photoisomerisation of Azobenzene: A New Balance between Mechanisms, ChemPhysChem, 2016, 17, 3068–3079.

    Article  CAS  Google Scholar 

  8. M. Quick, A. L. Dobryakov, M. Gerecke, C. Richter, F. Berndt, I. N. Ioffe, A. A. Granovsky, R. Mahrwald, N. P. Ernsting and S. A. Kovalenko, Photoisomerization Dynamics and Pathways oftrans- andcis-Azobenzene in Solution from Broadband Femtosecond Spectroscopies and Calculations, J. Phys. Chem. B, 2014, 118, 8756–8771.

    Article  CAS  Google Scholar 

  9. A. A. Beharry and G. A. Woolley, Azobenzene photoswitches for biomolecules, Chem. Soc. Rev., 2011, 40, 4422–4437.

    Article  CAS  Google Scholar 

  10. M. Dong, A. Babalhavaeji, S. Samanta, A. A. Beharry and G. A. Woolley, Red-Shifting Azobenzene Photoswitches for in Vivo Use, Acc. Chem. Res., 2015, 48, 2662–2670.

    Article  CAS  Google Scholar 

  11. M. Natali and S. Giordani, Molecular switches as photo- controllable smart receptors, Chem. Soc. Rev., 2012, 41, 4010.

    Article  CAS  Google Scholar 

  12. T. Avellini, M. Baroncini, G. Ragazzon, S. Silvi, M. Venturi and A. Credi, Photochemically Controlled Molecular Machines with Sequential Logic Operation, Isr. J. Chem., 2014, 54, 553–567.

    Article  CAS  Google Scholar 

  13. J. W. Brown, B. L. Henderson, M. D. Kiesz, A. C. Whalley, W. Morris, S. Grunder, H. Deng, H. Furukawa, J. I. Zink, J. F. Stoddart and O. M. Yaghi, Photophysical pore control in an azobenzene-containing metal organic framework, Chem. Sci., 2013, 4, 2858.

    Article  CAS  Google Scholar 

  14. N. Yanai, T. Uemura, M. Inoue, R. Matsuda, T. Fukushima, M. Tsujimoto, S. Isoda and S. Kitagawa, Guest-to-Host Transmission of Structural Changes for Stimuli-Responsive Adsorption Property, J. Am. Chem. Soc., 2012, 134, 4501–4504.

    Article  CAS  Google Scholar 

  15. S. Hvilsted, C. Sánchez and R. Alcalá, The volume holo- graphic optical storage potential in azobenzene containing polymers, J. Mater. Chem., 2009, 19, 6641–6648.

    Article  CAS  Google Scholar 

  16. E. Merino and M. Ribagorda, Control over molecular motion using thecistransphotoisomerization of the azo group, BeilsteinJ. Org. Chem., 2012, 8, 1071–1090.

    Article  CAS  Google Scholar 

  17. G. Gauglitz, Azobenzene as a convenient actinometer for the determination of quantum yields of photoreactions, J. Photochem., 1976, 5, 41–47.

    Article  CAS  Google Scholar 

  18. S. Hubig, Dissertation, Eberhard-Karls, 1984.

    Google Scholar 

  19. G. Gauglitz and S. Hubig, Chemical Actinometry in The UV by Azobenzene in Concentrated-Solution - A Convenient Method, J. Photochem., 1985, 30, 121–125.

    Article  CAS  Google Scholar 

  20. P. Klán and J. Wirz, Photochemistry of Organic Compounds: From Concepts to Practice, Wiley, Chichester, West Sussex, U.K., 2009, pp. 102–118.

    Book  Google Scholar 

  21. M. Gaplovsky, Y. V. Il'ichev, Y. Kamdzhilov, S. V. Kombarova, M. Mac, M. A. Schwoerer and J. Wirz, Photochemical reac- tion mechanisms of 2-nitrobenzyl compounds: 2-Nitrobenzyl alcohols form 2-nitroso hydrates by dual proton transfer, Photochem. Photobiol. Sci., 2005, 4, 33–42.

    Article  CAS  Google Scholar 

  22. P. Anstaett, A. Leonidova and G. Gasser, Caged Phosphate and the Slips and Misses in Determination of Quantum Yields for Ultraviolet-A-Induced Photouncaging, ChemPhysChem, 2015, 16, 1857–1860.

    Article  CAS  Google Scholar 

  23. P. Anstaett, A. Leonidova, E. Janett, C. G. Bochet and G. Gasser, Reply to Commentary by Trentham et al. on Caged Phosphate and the Slips and Misses in Determination of Quantum Yields for Ultraviolet-A-Induced Photouncaging by Gasser et al, ChemPhysChem, 2015, 16, 1863–1866.

    Article  CAS  Google Scholar 

  24. J. E. T. Corrie, J. H. Kaplan, B. Forbush, D. C. Ogden and D. R. Trentham, Commentary on “Caged Phosphate and the Slips and Misses in Determination of Quantum Yields for Ultraviolet-A-Induced Photouncaging” by G. Gasser and Co-Workers, ChemPhysChem, 2015, 16, 1861–1862.

    Article  CAS  Google Scholar 

  25. V. Ladányi, P. Dvorák, J. Al Anshori, L. Vetráková, J. Wirz and D. Heger, Azobenzene photoisomerization quantum yields in methanol redetermined, Photochem. Photobiol. Sci., 2017, DOI: 10.1039/C7PP00315C.

    Google Scholar 

  26. J. R. S. Machado and W. B. Streett, Equation of state and thermodynamic properties of liquid methanol from 298 to 489 K and pressures to 1040 bars, J. Chem. Eng. Data, 1983, 28, 218–223.

    Article  CAS  Google Scholar 

  27. J. Ronayette, R. Arnaud, P. Lebourgeois and J. Lemaire, Isomérisation photochimique de l'azobenzéne en solution. I, Can. J. Chem., 1974, 52, 1848–1857.

    Article  CAS  Google Scholar 

  28. J. Michl and E. W. Thulstrup, Ultraviolet and Infraread Linear Dichroism - Polarized-light as a Probe of Molecular and Electronic Structure, Acc. Chem. Res., 1987, 20, 192–199

    Article  CAS  Google Scholar 

  29. J. Michl, E. W. Thulstrup and J. H. Eggers, Polarization Spectra in Stretched Polymer Sheets. III. Physical Significance of Orientation Factors and Determination of n-n* Transition Moment Directions in Molecules of Low Symmetry, J. Phys. Chem., 1970, 74, 3878–3884.

    Article  CAS  Google Scholar 

  30. H. Rau, Spectroscopic Properties of Organic Azo- compounds, Angew. Chem., Int. Ed. Engl., 1973, 12, 224–235.

    Article  Google Scholar 

  31. G. S. Hartley, The cis-Form of Azobenzene and the Velocity of the Thermal cis - trans conversion of Azobenzene and Some Derivatives, J. Chem. Soc., 1938, 633.

    Google Scholar 

  32. P. Bortolus and S. Monti, Cis-Trans Photoisomerization of Azobenzene - Solvent and Triplet Donor Effects, J. Phys. Chem., 1979, 83, 648–652.

    Article  CAS  Google Scholar 

  33. C. L. Forber, E. C. Kelusky, N. J. Bunce and M. C. Zerner, Electronic spectra of cis- and trans-azobenzenes: consequences of ortho substitution, J. Am. Chem. Soc., 1985, 107, 5884–5890.

    Article  CAS  Google Scholar 

  34. G. Zimmerman, L.-Y. Chow and U.-J. Paik, The Photochemical Isomerization of Azobenzene, J. Am. Chem. Soc., 1958, 80, 3528–3531.

    Article  CAS  Google Scholar 

  35. A. R. Dias, M. E. M. Dapiedade, J. A. M. Simoes, J. A. Simoni, C. Teixeira, H. P. Diogo, M. Y. Yang and G. Pilcher, Enthalpies of Formation of Cis-azobenenze and Trans-azobenzene, J. Chem. Thermodyn., 1992, 24, 439–447.

    Article  CAS  Google Scholar 

  36. K. Takeshita, N. Hirota and M. Terazima, Enthalpy changes and reaction volumes of photoisomerization reactions in solution: azobenzene and p-coumaric acid, J. Photochem. Photobiol., A, 2000, 134, 103–109.

    Article  CAS  Google Scholar 

  37. H. K. Cammenga, V. N. Emelyanenko and S. P. Verevkin, Re-investigation and Data Assessment of the Isomerization and 2,2-Cyclization of Stilbenes and Azobenzenes, Ind. Eng. Chem. Res., 2009, 48, 10120–10128.

    Article  CAS  Google Scholar 

  38. L. De Boni, C. Toro, S. C. Zilio, C. R. Mendonca and F. E. Hernandez, Azo-group dihedral angle torsion depen- dence on temperature: A theorerical experimental study, Chem. Phys. Lett., 2010, 487, 226–231.

    Google Scholar 

Download references

Acknowledgements

Authors want to thank Roman Berânek, Peter Sebej, and Petr Klân for their support and fruitful discussions. The authors thank the Czech Science Foundation (GA15-12386S). The RECETOX research infrastructure was supported by the projects of the Czech Ministry of Education (LO1214 and LM2015051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L’ubica Vetráková or Jakob Wirz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vetráková, L., Ladányi, V., Al Anshori, J. et al. The absorption spectrum of cis-azobenzene. Photochem Photobiol Sci 16, 1749–1756 (2017). https://doi.org/10.1039/c7pp00314e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00314e

Navigation