Skip to main content
Log in

Ag(Ag2O)–ZrO2–Y2O3 photosensitive composites: influence of synthesized routes on structure and properties

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

It was shown that Ag(or Ag2O)–ZrO2–Y2O3 formation occurs due to the complex process of decomposition and structure transformation of oxide materials and Ag-complexes. Differences in the decomposition temperatures of Ag-complexes, in particular, and their melting temperatures, and the transformation of ZrO2–Y2O3 NPs morphology leads to the creation of composite structure of two types: an Ag–NPs/zirconia matrix and zirconia core/Ag-shell. It was shown that for these composites the temperature is an effective approach for controlling the NPs sizes for both components (Ag clusters and zirconia NPs), the defectiveness of the complex oxide and their optical properties, in particular the photosensitive to visible irradiation range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. Y. Ju-Nam and J. R. Lead, Sci. Total Environ., 2008, 12, 396.

    Article  Google Scholar 

  2. Nanocomposites and polymers with analytical methods, ed. J. Cuppoletti, Rijeka, In Tech, 2011, p. 51.

    Google Scholar 

  3. D. Cui, F. Tian, S. R. Coyer, J. Wang, B. Pan, F. Gao, R. He and Y. Zhang, J. Nanosci. Nanotechnol., 2007, 12, 1639.

    Article  Google Scholar 

  4. Y. Saito, Y. Imamura and A. Kitahara, Nucl. Instrum. Methods Phys. Res., Sect. B, 2003, 12, 272.

    Article  Google Scholar 

  5. T. Fujita, K. Ijima, N. Mitsui, K. Mochiduki and Y. Saito, Jpn.J. Appl. Phys., 2007, 12, 7362.

    Article  Google Scholar 

  6. S. Vivekanmandhan, M. Venkateswardlu, U. Rawls, M. Misra, A. Mohanty and N. Satyanarayaka, Ceram. Int., 2015, 12, 3305.

    Article  Google Scholar 

  7. E. Yokoyama, H. Sakata and M. Wakaki, J. Mater. Res., 2009, 24(8), 2541.

    Article  CAS  Google Scholar 

  8. M. Kumar, P. K. Kulriya, J. C. Pivin and D. K. Avasthi, J. Appl. Phys., 2011, 12, 044311.

    Article  Google Scholar 

  9. O. Gorshkov, M. Schenina, A. Kasatkin, D. Pavlov, I. Antonov, A. Bobrov and D. Filatov, Letters in JTF, 2015, 41(11), 62.

    Google Scholar 

  10. Lj. Kundokovic and M. Flytrani-Stephanopoulos, Appl. Catal., A, 1999, 183, 35.

    Article  Google Scholar 

  11. R. Grabowski, J. Sioczynski, M. Sliwa, D. Mukha, R. P. Socha, M. Lachowska and J. Skrzypek, ACS Catal., 2011, 1(4), 266.

    Article  CAS  Google Scholar 

  12. A. Eremenko, N. Smirnova, Iu. Gnatiuk, O. Linnik, N. Vityuk, Yu. Mukha and A. Korduban, Chapter in Book 3: Composite Materials, 2011, p. 2.

    Google Scholar 

  13. J. Matsuoka, R. Naruse, H. Nasu and K. Kamiya, J. Non-Cryst. Solids, 1997, 12, 151.

    Article  Google Scholar 

  14. F. Yang, X. Jing, J. Huang, D. Sun and Q. Li, lnd. Eng. Chem. Res., 2015, 12, 20.

    Google Scholar 

  15. M. Kumar and G. B. Reddy, Plasmonics, 2016, 11(1), 261.

    Article  CAS  Google Scholar 

  16. W. Gruenert, A. Brueckner, H. Hofmeister and P. Claus, J. Phys. Chem. B, 2004, 12, 5709.

    Article  Google Scholar 

  17. X. She and M. Flytzani-Stephanopoulos, J. Catal., 2006, 12, 79.

    Article  Google Scholar 

  18. G. E. Malashkevich, G. P. Shevchenko, S. V. Serezhkina and P. P. Pershukevich, in The 13th Int. Workshop on Sol-Gel Science and Technology, University of California, Los Angeles, 2005, p. 415.

    Google Scholar 

  19. T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova and O. Gorban, J. Nanopart. Res., 2011, 12, 4015.

    Article  Google Scholar 

  20. O. Gorban, S. Synyakina, G. Volkova, Y. Kulik and T. Konstantinova, High Pressure Res., 2011, 32(1), 72.

    Article  Google Scholar 

  21. O. A. Gorban, S. A. Sinyakina, Yu. O. Kulik, T. A. Ryumshina, S. V. Gorban, I. A. Danilenko and T. E. Konstantinova, Funct. Mater., 2010, 17(4), 1.

    Google Scholar 

  22. A. D. Stevens and M. C. R. Symons, Chem. Phys. Lett., 1984, 12, 514.

    Article  Google Scholar 

  23. V. Klimov, Nanoplasmonics, CRC Press Tailor and Francis group, Brooken, 2014, p. 593.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Gorban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorban, O., Danilenko, I., Gorban, S. et al. Ag(Ag2O)–ZrO2–Y2O3 photosensitive composites: influence of synthesized routes on structure and properties. Photochem Photobiol Sci 16, 53–59 (2017). https://doi.org/10.1039/c6pp00196c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c6pp00196c

Navigation