Issue 33, 2015

Structure and crystallinity of water dispersible photoactive nanoparticles for organic solar cells

Abstract

Water based inks would be a strong advantage for large scale production of organic photovoltaic devices. Formation of water dispersible nanoparticles produced by the Landfester method is a promising route to achieve such inks. We provide new insights into the key ink properties of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) nanoparticles such as the internal structure and crystallinity of the dispersed nanoparticles and the previously unreported drastic changes that occur when the inks are cast into a film. We observe through transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) that the nanoparticles in dispersion are spherical with the nanodomains of P3HT being partly crystalline. When wet processed and dried into films, the nanoparticles lose their spherical shape and become flattened into oblate shapes with a large aspect ratio. Most particles are observed to have a diameter 13 times of the particle height. After casting into a film, the crystal domains adopt a preferred orientation with the majority of the nanocrystals (68%) with face-on orientation to the substrate. We propose that low substrate surface energy is responsible for particle deformation and texturing.

Graphical abstract: Structure and crystallinity of water dispersible photoactive nanoparticles for organic solar cells

Supplementary files

Article information

Article type
Paper
Submitted
03 Jul 2015
Accepted
13 Jul 2015
First published
13 Jul 2015

J. Mater. Chem. A, 2015,3, 17022-17031

Author version available

Structure and crystallinity of water dispersible photoactive nanoparticles for organic solar cells

E. B. L. Pedersen, M. C. Pedersen, S. B. Simonsen, R. G. Brandt, A. P. L. Böttiger, T. R. Andersen, W. Jiang, Z. Y. Xie, F. C. Krebs, L. Arleth and J. W. Andreasen, J. Mater. Chem. A, 2015, 3, 17022 DOI: 10.1039/C5TA04980F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements