Issue 35, 2014

Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization

Abstract

A novel adsorbent preparation method using atom-transfer radical polymerization (ATRP) combined with radiation-induced graft polymerization (RIGP) was developed to synthesize an adsorbent for uranium recovery from seawater. The ATRP method allowed a much higher degree of grafting on the adsorbent fibers (595–2818%) than that allowed by RIGP alone. The adsorbents were prepared with varied compositions of amidoxime groups and hydrophilic acrylate groups. The successful preparation revealed that both ligand density and hydrophilicity were critical for optimal performance of the adsorbents. Adsorbents synthesized in this study showed a relatively high performance (141–179 mg g−1 at 49–62% adsorption) in laboratory screening tests using a uranium concentration of ∼6 ppm. This performance is much higher than that of known commercial adsorbents. However, actual seawater experiment showed impeded performance compared to the recently reported high-surface-area-fiber adsorbents, due to slow adsorption kinetics. The impeded performance motivated the investigation of the effect of hydrophilic block addition on the graft chain terminus. The addition of a hydrophilic block on the graft chain terminus nearly doubled the uranium adsorption capacity in seawater, from 1.56 mg g−1 to 3.02 mg g−1. The investigation revealed the importance of polymer chain conformation, in addition to the ligand and hydrophilic group ratio, for advanced adsorbent synthesis for uranium recovery from seawater.

Graphical abstract: Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization

Supplementary files

Article information

Article type
Paper
Submitted
26 Jun 2014
Accepted
09 Jul 2014
First published
04 Aug 2014

J. Mater. Chem. A, 2014,2, 14674-14681

Author version available

Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization

T. Saito, S. Brown, S. Chatterjee, J. Kim, C. Tsouris, R. T. Mayes, L. Kuo, G. Gill, Y. Oyola, C. J. Janke and S. Dai, J. Mater. Chem. A, 2014, 2, 14674 DOI: 10.1039/C4TA03276D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements