Skip to main content
Log in

Triplet state quenching of phenosafranine dye by indolic compounds studied by transient absorption spectroscopy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The interaction of the triplet state of the synthetic dye phenosafranine (3,7-diamino-5-phenylphenazinium chloride) with indolic compounds of biological relevance was investigated in water by means of laser flash photolysis. The rate constants for the triplet quenching were determined. The quenching process may be explained by an electron transfer from the indole to the dye in its triplet state. The rate constants present a typical dependence of an electron transfer process with the one-electron oxidation potential of the indole. Indole-3-acetic acid and its homologous indole propionic and indole butyric acids are the most effective quenchers with rate constants reaching the diffusion limit. Rate constants for indole itself, tryptophan and indole-3 carboxylic acid are one order of magnitude lower. The electron transfer nature of the quenching reaction is further confirmed by the detection of the semi-reduced form of the dye by its transient absorption. The absorption coefficients of the transient species were estimated, and the quantum yield of the charge separation process was determined. The efficiency of formation of radical species is between 60 and 90% of the triplets intercepted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Creed, The photophysics and photochemistry of the near UV absorbing aminoa acids-I Tryptophan and its simple derivatives Photochem. Photobiol. 1984 39 537–562.

    Article  CAS  Google Scholar 

  2. A. Yoshimura and T. Ohno, Lumiflavin-sensitized photooxygenation of indole Photochem. Photobiol. 1988 48 561–565.

    Article  CAS  PubMed  Google Scholar 

  3. J. L. Koch, R. M. Oberlander, I. A. Tamas, J. L. Germain and D. B. S. Ammondson, Evidence of singlet oxygen participation in the chlorophyll-sensitized photooxidation of indoleacetic acid Plant Physiol. 1982 70 414–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. F. Amat-Guerri, R. Martínez-Utrilla, M. M. C. López-González, Direct and dye-sensitized aqueous photo-oxidation of 3-indoleacetic acid, methyl-3-indoleacetate and 1-methyl-3-indoleacetic acid, I: Analysis of products J. Photochem. Photobiol., A 1990 50 361–375.

    Article  CAS  Google Scholar 

  5. F. Amat-Guerri, R. Martínez-Utrilla, Direct and dye-sensitized aqueous photo-oxidation of 3-indoleacetic acid, methyl-3-indoleacetate and 1-methyl-3-indoleacetic acid 1-methyl-3-indoleacetic acid, II: Quantum yields and mechamism J. Photochem. Photobiol., A 1990 50 377–387.

    Article  CAS  Google Scholar 

  6. S. Miskoski and N. A. Garcia, Dark and photoinduced interactions between riboflavin and indole auxins Collect. Czech. Chem. Commun. 1991 56 1838–1849.

    Article  CAS  Google Scholar 

  7. C. A. Bueno, E. Silva and A. M. Edwards, Incorporation and photodegradation of flavin and indole derivatives in anionic, cationic and neutral micellar dispersions J. Photochem. Photobiol., B 1999 52 123–130.

    Article  CAS  Google Scholar 

  8. M. Qamar and M. Muneer, Comparative photocatalytic study of two selected pesticide derivatives, indole-3-acetic acid and indole-3-butyric acid in aqueous suspensions of titanium dioxide J. Hazard. Mater. B 2005 120 219–227.

    Article  CAS  Google Scholar 

  9. M. V. Encinas, C. M. Previtali and S. Bertolotti, Anthracene singlet quenching by indoles in media of different polarities: Mechanism and chemical photoreaction J. Chem. Soc., Faraday Trans. 1996 92 17–22.

    Article  CAS  Google Scholar 

  10. A. I. Novaira, C. D. Borsarelli, J. J. Cosa and C. M. Previtali, Electron Transfer Singlet Quenching and Exciplexes in the Photoreaction of Substituted Anthracenes with Indole Derivatives J. Photochem. Photobiol. A 1998 115 43–47.

    Article  CAS  Google Scholar 

  11. S. G. Bertolotti and C. M. Previtali, The excited states quenching of safranine T by p-benzoquinones in polar solvents J. Photochem. Photobiol., A 1997 103 115–119.

    Article  CAS  Google Scholar 

  12. S. D.-M. Islam, M. Fujitsuka and O. Ito, Photochemical reactions of triplet state of safranine-T studied by transient absorption spectroscopy in visible/near-IR regions Phys. Chem. Chem. Phys. 1999 1 3737–3742.

    Article  CAS  Google Scholar 

  13. A. A. Ensafi and A. Kazemzadeh, Monitoring nitrite with optical sensing films Microchem. J. 2002 72 193–199.

    Article  CAS  Google Scholar 

  14. C. Z. Huang, Y. F. Li and X. D. Liu, Determination of nucleic acids at nanogram levels with safranine T by a resonance light-scattering technique Anal. Chim. Acta 1998 375 89–97.

    Article  Google Scholar 

  15. Y. Cao, X. He, Z. Gao and L. Peng, Fluorescence energy transfer between Acridine Orange and Safranine T and its application in the determination of DNA Talanta 1999 49 377–383.

    Article  CAS  PubMed  Google Scholar 

  16. K. V. Ylitalo, A. Ala-Rämi, E. V. Liimatta, K. J. Peuhkurinen and I. E. Hassinen, Intracellular Free Calcium and Mitochondrial Membrane Potential in Ischemia/Reperfusion and Preconditioning J. Mol. Cell. Cardiol. 2000 32 1223–1238.

    Article  CAS  PubMed  Google Scholar 

  17. G. D. Sharma, S. K. Sharma and M. S. Roy, Charge transfer and photogeneration process in device consisting of safranine O dye and TiO2 nano-particles Mater. Sci. Eng., B 2003 100 13–17.

    Article  CAS  Google Scholar 

  18. M. Bhattacharyya, B. B. Bhowmik and P. Nandy, Photochemical energy conversion in lecithin liposomes in the presence of phenosafranin and chlorophyll Energy 1989 14 345–348.

    Article  CAS  Google Scholar 

  19. C. M. Previtali, S. G. Bertolotti, M. G. Neumann, I. A. Pastre, A. M. Rufs and M. V. Encinas, Laser Flash Photolysis of the Photoinitiator System for Vinyl Polymerization: Safranine T - Aliphatic Amines Macromolecules 1994 27 7454–7458.

    Article  CAS  Google Scholar 

  20. M. V. Encinas, A. M. Rufs, M. G. Neumann and C. M. Previtali, Photoinitiated Vinyl Polymerization by Safranine T/triethanolamine in Aqueous Solution Polymer 1996 37 1395–1398.

    Article  CAS  Google Scholar 

  21. M. L. Gómez, V. Avila, H. A. Montejano and C. M. Previtali, A mechanistic and laser flash photolysis investigation of acrylamide polymerization photoinitiated by the three component system safranine-T/triethanolamine/diphenyliodonium chloride Polymer 2003 44 2875–2881.

    Article  CAS  Google Scholar 

  22. M. L. Gómez, H. A. Montejano, M. V. Bohórquez and C. M. Previtali, Photopolymerization of acrylamide initiated by the three component system safranine/triethanolamine/diphenyliodonium chloride. The effect of aggregation of the salt J. Polym. Sci., Part A: Polym. Chem. 2004 42 4916–4920.

    Article  CAS  Google Scholar 

  23. R. D. Stiehler, T. Chen and W. M. Clark, Studies on Oxidation-Reduction. XVIII. Simple Safranines J. Am. Chem. Soc. 1933 55 891–906.

    Article  CAS  Google Scholar 

  24. V. Ganesan, S. A. John and R. Ramaraj, Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion film J. Electroanal. Chem. 2001 502 167–173.

    Article  CAS  Google Scholar 

  25. K. R. Gopidas and P. V. Kamat, Photophysics and photochemistry of phenosafranine dye in aqueous and acetonitrile solutions J. Photochem. Photobiol., A 1989 48 291–301.

    Article  CAS  Google Scholar 

  26. S. Jockusch, H.-J. Timpe, W. Schnabel and N. J. Turro, Photoinduced Energy and Electron Transfer between Ketone Triplets and Organic Dyes J. Phys. Chem. A 1997 101 440–445.

    Article  CAS  Google Scholar 

  27. S. S. Jayanthi and P. Ramamurthy, Excited singlet state reaction of phenosafranine with electron donors Role of the heavy-atom effect in triplet induction J. Chem. Soc., Faraday Trans. 1998 94 1675–1679.

    Article  Google Scholar 

  28. K. R. Gopidas and P. V. Kamat, Photoelectrochemistry in particulate systems. 11. Reduction of phenosafranin dye in colloidal titanium dioxide and cadmium sulfide suspensions Langmuir 1989 5 22–26. S. Easwaramoorthi and P. Natarajan, Photophysical properties of phenosafranine adsorbed on the TiO2-incorporated zeolite-Y Microporous Mesoporous Mater. 2005 86 185–190.

    Article  CAS  Google Scholar 

  29. K. R. Gopidas and P. V. Kamat, Photochemistry in polymers: Photoinduced electron transfer between phenosafranine and triethylamine in perfluorosulfonate membrane J. Phys. Chem. 1990 94 4723–4727.

    Article  CAS  Google Scholar 

  30. P. Das, A. Chakrabarty, A. Mallick and N. Chattopadhyay, Photophysics of a cationic biological photosensitizer in anionic micellar environments: combined effect of polarity and rigidity J. Phys. Chem. B 2007 111 11169–11176. P. Natarajan and C. Raja, Studies on the dynamics of poly(carboxylic acids) with covalently bound thionine and phenosafranine in dilute aqueous solutions Eur. Polym. J. 2005 41 2496–2504.

    Article  CAS  PubMed  Google Scholar 

  31. R. Chaudhuri, P. K. Sengupta, K. K. Rohatgi Mukherjee, Luminescence behaviour of phenosafranin in reverse micelles of AOT in n-heptane J. Photochem. Photobiol., A 1997 108 261–265.

    Article  CAS  Google Scholar 

  32. L. Ziolkowski, K. Vinodgopal and P. V. Kamat, Photostabilization of organic dyes on poly(styrenesulfonate)-capped TiO2 Nanoparticles Langmuir 1997 13 3124–3128.

    Article  CAS  Google Scholar 

  33. S. Das and G. S. Kumar, Molecular aspects on the interaction of phenosafranine to deoxyribonucleic acid: Model for intercalative drug-DNA binding J. Mol. Struct. 2008 872 56–63. A. Y. Khan, B. Saha and G. S. Kumar, Phenazinium dyes safranine O and phenosafranine induce self-structure in single stranded polyadenylic acid: Structural and thermodynamic studies J. Photochem. Photobiol., B 2014 132 17–26.

    Article  CAS  Google Scholar 

  34. M. F. Broglia, M. L. Gomez, S. G. Bertolotti, H. A. Montejano and C. M. Previtali, Photophysical properties of safranine and phenosafranine: A comparative study by laser flash photolysis and laser induced optoacoustic spectroscopy J. Photochem. Photobiol., A 2005 173 115–120.

    Article  CAS  Google Scholar 

  35. D. Sarkar, P. Das, S. Basak and N. Chattopadhyay, Binding interaction of cationic phenazinium dyes with calf thymus DNA: A comparative study J. Phys. Chem. B 2008 112 9243–9249. D. Sarkar, P. Das, A. Girigoswami and N. Chattopadhyay, Spectroscopic characterization of phenazinium dye aggregates in water and acetonitrile media: Effect of methyl substitution on the aggregation phenomenon J. Phys. Chem. A 2008 112 9684–9691.

    Article  CAS  PubMed  Google Scholar 

  36. C. E. Baumgartner, H. H. Richtol and D. A. Aikens, Transient photochemistry of safranine-O Photochem. Photobiol. 1981 34 17–22.

    Article  CAS  Google Scholar 

  37. M. F. Broglia, S. G. Bertolotti and C. M. Previtali, Excited states quenching of phenosafranine dye by electron donors J. Photochem. Photobiol., A 2005 170 261–265.

    Article  CAS  Google Scholar 

  38. M. F. Broglia, S. G. Bertolotti and C. M. Previtali, Proton and electron transfer in the excited states quenching of phenosafranine by aliphatic amines Photochem. Photobiol. 2007 83 535–541.

    Article  CAS  PubMed  Google Scholar 

  39. M. F. Broglia, S. G. Bertolotti, C. M. Previtali and H. A. Montejano, Solvatochromic effects on the fluorescence and triplet-triplet absorption of phenosafranine in protic and aprotic solvents J. Photochem. Photobiol., A 2006 180 143–149.

    Article  CAS  Google Scholar 

  40. M. Colonna, L. Greci, M. Poloni, G. Marrosu, A. Trazza, F. P. Colonna and G. Distefano, A Correlation between half-wave and ionization potentials for indoles and inolizines J. Chem. Soc., Perkin Trans. 2 1986 1229–1231.

    Google Scholar 

  41. G. Merenyi, J. Lind and X. Shen, Electron transfer from indoles, phenol and sulfite to clhorine dioxide J. Phys. Chem. 1988 92 134–137.

    Article  CAS  Google Scholar 

  42. T. Shen, Z.-G. Zhao, Q. Yu, H.-J. Xu, Photosensitized reduction of benzyl by heteroatom-containing anthracene dyes J. Photochem. Photobiol., A 1989 47 203–212.

    Article  CAS  Google Scholar 

  43. A. K. Chibisov, Kinetics of electron transfer in photochemical reactions Prog. React. Kinet. 1984 13 1–61. H.-J. Timpe and S. Neuenfeld, Photoreduction of some dyes by styrene J. Chem. Soc., Faraday Trans. 1992 88 2329–2336.

    CAS  Google Scholar 

  44. V. B. Gawandi, S. N. Guha, H. Mohan and J. P. Mittal, Kinetic and redox characteristics of semireduced species derived from phenosafranine in homogeneous aqueous and sodium dodecyl sulfate micellar media Int. J. Chem. Kinet. 2002 34 56–66.

    Article  CAS  Google Scholar 

  45. S. N. Guha and J. P. Mittal, Pulsed radiolysis study of one-electron reduction of safranine T J. Chem. Soc., Faraday Trans. 1997 93 3647–3652.

    Article  CAS  Google Scholar 

  46. R. Bonneau, I. Carmichael and G. L. Hug, Molar absorption coefficients of transient species in solution Pure Appl. Chem. 1991 63 289–299.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos M. Previtali or Sonia G. Bertolotti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broglia, M.F., Previtali, C.M. & Bertolotti, S.G. Triplet state quenching of phenosafranine dye by indolic compounds studied by transient absorption spectroscopy. Photochem Photobiol Sci 14, 407–413 (2015). https://doi.org/10.1039/c4pp00365a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00365a

Navigation