Skip to main content

Advertisement

Log in

Applicability of new degradable hypericin-polymer-conjugates as photosensitizers: principal mode of action demonstrated by in vitro models

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Two series of water soluble novel conjugates of the photosensitizer hypericin were prepared and evaluated for their use as agents for photodynamic therapy, with covalently and non-covalently loaded hypericin on functionalised, hydrolytically degradable inorganic-organic hybrid polyphosphazenes. The conjugates showed excellent aqueous solubility and similar fluorescence spectra to pristine hypericin Detailed in vitro investigations revealed that the substances were non-toxic in the dark over a wide concentration range, but displayed phototoxicity upon irradiation. Cell uptake studies showed rapid uptake with localization of hypericin observed in endoplasmic reticulum, Golgi complex and particularly in the lysosomes. Furthermore, a DNA fragmentation assay revealed that the photosensitizer conjugates are efficient inducers of apoptosis with some tumor cell selectivity caused by faster and enhanced accumulation in A431 than in HaCaT cells, and thus a moderately higher phototoxicity of A431 compared to HaCaT cells. These novel photosensitizer conjugates hence represent viable hydrolytically degradable alternatives for the advanced delivery of hypericin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Agostinis, A. Vantieghem, W. Merlevede and P. A. de Witte, Hypericin in cancer treatment: more light on the way, Int. J. Biochem. Cell Biol., 2002, 34, 221.

    Article  CAS  PubMed  Google Scholar 

  2. M. Alecu, C. Ursaciuc, F. Halalau, G. Coman, W. Merlevede, E. Waelkens and P. de Witte, Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin, Anticancer Res., 1998, 18, 4651.

    CAS  PubMed  Google Scholar 

  3. M. Blank, G. Kostenich, G. Lavie, S. Kimel, Y. Keisari and A. Orenstein, Wavelength-dependent properties of photo-dynamic therapy using hypericin in vitro and in an animal model, Photochem. Photobiol., 2002, 76, 335.

    Article  CAS  PubMed  Google Scholar 

  4. I. Cavarga, P. Brezani, M. Cekanova-Figurova, P. Solar, P. Fedorocko and P. Miskovsky, Photodynamic therapy of murine fibrosarcoma with topical and systemic administration of hypericin, Phytomedicine, 2001, 8, 325.

    Article  CAS  PubMed  Google Scholar 

  5. C. S. Head, Q. Luu, J. Sercarz and R. Saxton, Photodynamic therapy and tumor imaging of hypericin-treated squamous cell carcinoma, World J. Surg. Oncol, 2006, 4, 87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. M. Olivo, H. Y. Du and B. H. Bay, Hypericin lights up the way for the potential treatment of nasopharyngeal cancer by photodynamic therapy, Curr. Clin. Pharmacol, 2006, 1, 217.

    Article  CAS  PubMed  Google Scholar 

  7. R. Sanovic, T. Verwanger, A. Hard and B. Krammer, Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma, Photodiagn. Photodyn. Ther., 2011, 8, 291.

    Article  CAS  Google Scholar 

  8. C. L. Saw, M. Olivo, K. C. Soo and P. W. Heng, Delivery of hypericin for photodynamic applications, Cancer Lett., 2006, 241, 23.

    Article  CAS  PubMed  Google Scholar 

  9. P. S. P. Thong, M. Olivo, W. W. L. Chin, R. Bhuvaneswari, K. Mancer and K. C. Soo, Clinical application of fluorescence endoscopic imaging using hypericin for the diagnosis of human oral cavity lesions, Br. J. Cancer, 2009, 101, 1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. I. Zupko, A. R. Kamuhabwa, M. A. D’Hallewin, L. Baert and P. A. De Witte, In vivo photodynamic activity of hypericin in transitional cell carcinoma bladder tumors, Int. J. Oncol, 2001, 18, 1099.

    CAS  PubMed  Google Scholar 

  11. V. Engelhardt, B. Krammer and K. Plaetzer, Antibacterial photodynamic therapy using water-soluble formulations of hypericin or mTHPC is effective in inactivation of Staphylococcus aureus, Photochem. Photobiol. Sci., 2010, 9, 365.

    Article  CAS  PubMed  Google Scholar 

  12. A. Karioti and A. R. Bilia, Hypericins as potential leads for new therapeutics, Int. J. Mol. Sci., 2010, 11, 562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. B. Krammer and T. Verwanger, Molecular response to hypericin-induced photodamage, Curr. Med. Chem., 2012, 19, 793.

    Article  CAS  PubMed  Google Scholar 

  14. E. Buytaert, J. Y. Matroule, S. Durinck, P. Close, S. Kocanova, J. R. Vandenheede, P. A. de Witte, J. Piette and P. Agostinis, Molecular effectors and modulators of hyperi-cin-mediated cell death in bladder cancer cells, Oncogene, 2008, 27, 1916.

    Article  CAS  PubMed  Google Scholar 

  15. M. Zeisser-Labouebe, N. Lange, R. Gurny and F. Delie, Hypericin-Ioaded nanoparticles for the photodynamic treatment of ovarian cancer, Int. J. Pharm., 2006, 326, 174.

    Article  CAS  PubMed  Google Scholar 

  16. A. Huygens, A. R. Kamuhabwa and P. A. de Witte, Stability of different formulations and ion pairs of hypericin, Eur. J. Pharm. Biopharm., 2005, 59, 461.

    Article  CAS  PubMed  Google Scholar 

  17. A. S. Derycke and P. A. De Witte, Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-llposomes, Int. J. Oncol, 2002, 20, 181.

    CAS  PubMed  Google Scholar 

  18. A. Kubin, P. Meissner, F. Wierrani, U. Burner, A. Bodenteich, A. Pytel and N. Schmeller, Fluorescence diagnosis of bladder cancer with new water soluble hypericin bound to polyvinylpyrrolidone: PVP-hypericin, Photochem. Photobiol, 2008, 84, 1560.

    Article  CAS  PubMed  Google Scholar 

  19. M. Van De Putte, T. Roskams, G. Bormans, A. Verbruggen and P. A. De Witte, The impact of aggregation on the bio-distribution of hypericin, Int. J. Oncol, 2006, 28, 655.

    Google Scholar 

  20. A. Kubin, H. G. Loew, U. Burner, G. Jessner, H. Kolbabek and F. Wierrani, How to make hypericin water-soluble, Pharmazie, 2008, 63, 263.

    CAS  PubMed  Google Scholar 

  21. J. Vandepitte, B. Van Cleynenbreugel, K. Hettinger, H. Van Poppel and P. A. de Witte, Biodistribution of PVP-hypericin and hexaminolevulinate-induced PpIX in normal and orthotopic tumor-bearing rat urinary bladder, Cancer Chemother. Pharmacol, 2011, 67, 775.

    Article  CAS  PubMed  Google Scholar 

  22. J. Vandepitte, M. Roelants, B. Van Cleynenbreugel, K. Hettinger, E. Lerut, H. Van Poppel and P. A. de Witte, Biodistribution and photodynamic effects of polyvinylpyrrolidone-hypericin using multicellular spheroids composed of normal human urothelial and T24 transitional cell carcinoma cells, J. Biomed. Opt, 2011, 16, 018001.

    Article  PubMed  CAS  Google Scholar 

  23. R. Duncan, Polymer therapeutics as nanomedicines: new perspectives, Curr. Opin. Biotechnol., 2011, 22, 492.

    Article  CAS  PubMed  Google Scholar 

  24. R. Duncan and S. C. Richardson, Endocytosis and intracellular trafficking as gateways for nanomedicine delivery: opportunities and challenges, Mol. Pharm., 2012, 9, 2380.

    Article  CAS  PubMed  Google Scholar 

  25. E. Markovsky, H. Baabur-Cohen, A. Eldar-Boock, L. Omer, G. Tiram, S. Ferber, P. Ofek, D. Polyak, A. Scomparin and R. Satchi-Fainaro, Administration, distribution, metabolism and elimination of polymer therapeutics, J. Controlled Release, 2012, 161, 446.

    Article  CAS  Google Scholar 

  26. R. Gaspar and R. Duncan, Polymeric carriers: preclinical safety and the regulatory implications for design and development of polymer therapeutics, Adv. Drug Delivery Rev., 2009, 61, 1220.

    Article  CAS  Google Scholar 

  27. V. Bühler, Polyvinylpyrrolidone Excipients for Pharmaceuticals, 2005.

    Google Scholar 

  28. H. A. Ravin, A. M. Seligman and J. Fine, Polyvinyl Pyrrolidone as a Plasma Expander, N. Engl. J. Med., 1952, 247, 921.

    Article  CAS  PubMed  Google Scholar 

  29. H. R. Allcock and N. L. Morozowich, Bioerodible polyphos-phazenes and their medical potential, Polym. Chem., 2012, 3, 578.

    Article  CAS  Google Scholar 

  30. A. Andrianov, Water-Soluble Polyphosphazenes for Biomedical Applications, J. Inorganic Organomet Polym. Mater., 2006, 16, 397.

    Article  CAS  Google Scholar 

  31. I. Teasdale, S. Wilfert, I. Nischang and O. Brllggemann, Multifunctional and biodegradable polyphosphazenes for use as macromolecular anti-cancer drug carriers, Polym. Chem., 2011, 2, 828.

    Article  CAS  Google Scholar 

  32. H. Henke, S. Wilfert, A. Iturmendi, O. Brllggemann and I. Teasdale, Branched polyphosphazenes with controlled dimensions, J. Polym. Sci., Part A: Polym. Chem., 2013, 51, 4467.

    Article  CAS  Google Scholar 

  33. I. Teasdale and O. Brllggemann, Polyphosphazenes: Multifunctional, Biodegradable Vehicles for Drug and Gene Delivery, Polymers, 2013, 5, 161.

    Article  PubMed  CAS  Google Scholar 

  34. S. Wilfert, A. Iturmendi, W. Schoefberger, K. Kryeziu, P. Heffeter, W. Berger, O. Brllggemann and I. Teasdale, Water-soluble, biocompatible polyphosphazenes with controllable and pH-promoted degradation behavior, J. Polym. Sci., Part A: Polym. Chem., 2014, 52, 287.

    Article  CAS  Google Scholar 

  35. H. Falk, J. Meyer and M. Oberreiter, A Convenient Semisynthetic Route to Hypericin, Monatsh. Chem., 1993, 124, 339.

    Article  CAS  Google Scholar 

  36. A. K. Andrianov, A. Marin and P. Peterson, Water-Soluble Biodegradable Polyphosphazenes Containing N-Ethylpyrro-lidone Groups, Macromolecules, 2005, 38, 7972.

    Article  CAS  Google Scholar 

  37. I. Teasdale, M. Waser, S. Wilfert, H. Falk and O. Brllggemann, Photoreactive, water-soluble conjugates of hypericin with polyphosphazenes, Monatsh. Chem., 2012, 143, 355.

    Article  CAS  Google Scholar 

  38. Y. F. Ho, M. H. Wu, B. H. Cheng, Y. W. Chen and M. C. Shih, Lipid-mediated preferential localization of hypericin in lipid membranes, Biochim. Biophys. Acta, 2009, 1788, 1287.

    Article  CAS  PubMed  Google Scholar 

  39. J. Knaup, Treatment of squamous cell carcinoma of epidermolysis bullosa patients by photodynamic therapy: an in vitro study, Master thesis, University of Salzburg, 2008.

    Google Scholar 

  40. A. L. Vandenbogaerde, E. M. Delaey, A. M. Vantieghem, B. E. Himpens, W. J. Merlevede and P. A. de Witte, Cytotoxicity and antiproliferative effect of hypericin and derivatives after photosensitization, Photochem. Photobiol., 1998, 67, 119.

    Article  CAS  PubMed  Google Scholar 

  41. M. Blank, M. Mandel, S. Hazan, Y. Keisari and G. Lavie, Anti-cancer activities of hypericin in the dark, Photochem. Photobiol., 2001, 74, 120.

    Article  CAS  PubMed  Google Scholar 

  42. P. Agostinis, A. Donella-Deana, J. Cuveele, A. Vandenbogaerde, S. Sarno, W. Merlevede and P. de Witte, A comparative analysis of the photosensitized inhibition of growth-factor regulated protein kinases by hypericin-derivatives, Biochem. Biophys. Res. Commun, 1996, 220, 613.

    Article  CAS  PubMed  Google Scholar 

  43. M. Blank, G. Lavie, M. Mandel, S. Hazan, A. Orenstein, D. Meruelo and Y. Keisari, Antimetastatic activity of the photodynamic agent hypericin in the dark, Int. J. Cancer, 2004, 111, 596.

    Article  CAS  PubMed  Google Scholar 

  44. V. Huntosova, D. Buzova, D. Petrovajova, P. Kasak, Z. Nadova, D. Jancura, F. Sureau and P. Miskovsky, Development of a new LDL-based transport system for hydrophobic/amphi-philic drug delivery to cancer cells, Int. J. Pharm., 2012, 436, 463.

    Article  CAS  PubMed  Google Scholar 

  45. R. Penjweini, N. Smisdom, S. Deville and M. Ameloot, Transport and accumulation of PVP-Hypericin in cancer and normal cells characterized by image correlation spectroscopy techniques, Biochim. Biophys. Acta, 2014, 1843, 855.

    Article  CAS  PubMed  Google Scholar 

  46. I. G. England, L. Naess, R. Blomhoff and T. Berg, Uptake, intracellular transport and release of 125I-poIy(vinyIpyrroll-done) and [14C]-sucrose-asiaIofetuin in rat liver parenchymal cells. Effects of ammonia on the intracellular transport, Biochem. Pharmacol., 1986, 35, 201.

    Article  CAS  PubMed  Google Scholar 

  47. A. P. Castano, T. N. Demidova and M. R. Hamblin, Mechanisms in photodynamic therapy: part one - photosensiti-zers, photochemistry and cellular localization, Photodiagn. Photodyn. Ther., 2004, 1, 279.

    Article  CAS  Google Scholar 

  48. D. Kessel, Y. Luo, P. Mathieu and J. J. Reiners Jr., Determinants of the apoptotic response to lysosomal photo-damage, Photochem. Photobiol., 2000, 71, 196.

    Article  CAS  PubMed  Google Scholar 

  49. U. Repnik, V. Stoka, V. Turk and B. Turk, Lysosomes and lysosomal cathepsins in cell death, Biochim. Biophys. Acta, 2012, 1824, 22.

    Article  CAS  PubMed  Google Scholar 

  50. E. Buytaert, G. Callewaert, N. Hendrickx, L. Scorrano, D. Hartmann, L. Missiaen, J. R. Vandenheede, I. Heirman, J. Grooten and P. Agostinis, Role of endoplasmic reticulum depletion and multidomain proapoptotic BAX and BAK proteins in shaping cell death after hypericin-mediated photodynamic therapy, FASEBJ., 2006, 20, 756.

    Article  CAS  Google Scholar 

  51. M. Shi, T. Zhang, L. Sun, Y. Luo, D. H. Liu, S. T. Xie, X. Y. Song, G. F. Wang, X. L. Chen, B. C. Zhou and Y. Z. Zhang, Calpain, Atg5 and Bak play important roles in the crosstalk between apoptosis and autophagy induced by influx of extracellular calcium, Apoptosis, 2013, 18, 435.

    Article  CAS  PubMed  Google Scholar 

  52. Z. Jiang, Z. Hu, L. Zeng, W. Lu, H. Zhang, T. Li and H. Xiao, The role of the Golgi apparatus in oxidative stress: is this organelle less significant than mitochondria?, Free Radical Biol. Med., 2011, 50, 907.

    Article  CAS  Google Scholar 

  53. R. Ritz, F. Roser, N. Radomski, W. S. Strauss, M. Tatagiba and A. Gharabaghi, Subcellular colocalization of hypericin with respect to endoplasmic reticulum and Golgi apparatus in glioblastoma cells, Anticancer Res., 2008, 28, 2033.

    PubMed  Google Scholar 

  54. J. Berlanda, T. Kiesslich, C. B. Oberdanner, F. J. Obermair, B. Krammer and K. Plaetzer, Characterization of apoptosis induced by photodynamic treatment with hypericin in A431 human epidermoid carcinoma cells, J. Environ. Pathol. Toxicol. Oncol, 2006, 25, 173.

    Article  CAS  PubMed  Google Scholar 

  55. V. Sackova, P. Fedorocko, B. Szilardiova, J. Mikes and J. Kleban, Hypericin-induced photocytotoxicity is connected with G2/M arrest in HT-29 and S-phase arrest in U937 cells, Photochem. Photobiol, 2006, 82, 1285.

    Article  CAS  PubMed  Google Scholar 

  56. H. B. Lee, A. S. Ho and S. H. Teo, p53 Status does not affect photodynamic cell killing induced by hypericin, Cancer Chemother. Pharmacol, 2006, 58, 91.

    Article  CAS  PubMed  Google Scholar 

  57. J. Mikes, J. Koval, R. Jendzelovsky, V. Sackova, I. Uhrinova, M. Kello, L. Kulikova and P. Fedorocko, The role of p53 in the efficiency of photodynamic therapy with hypericin and subsequent long-term survival of colon cancer cells, Photochem. Photobiol. Sci., 2009, 8, 1558.

    Article  CAS  PubMed  Google Scholar 

  58. X. Wang, Y. Guo, S. Yang, C. Wang, X. Fu, J. Wang, Y. Mao, J. Zhang and Y. Li, Cellular and molecular mechanisms of photodynamic hypericin therapy for nasopharyngeal carcinoma cells, J. Pharmacol. Exp. Ther., 2010, 334, 847.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ian Teasdale or Barbara Krammer.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c4pp00251b

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feinweber, D., Verwanger, T., Brüggemann, O. et al. Applicability of new degradable hypericin-polymer-conjugates as photosensitizers: principal mode of action demonstrated by in vitro models. Photochem Photobiol Sci 13, 1607–1620 (2014). https://doi.org/10.1039/c4pp00251b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c4pp00251b

Navigation