Skip to main content
Log in

Application of the UV-C photo-assisted peroxymonosulfate oxidation for the mineralization of dimethyl phthalate in aqueous solutions

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

In this study, the degradation of dimethyl phthalate (DMP), taken as model compound for phthalate esters, by the photo-assisted peroxymonosulfate (PMS) process was investigated. The high oxidation potential of hydroxyl and sulfate radicals generated by the activation of PMS under UV-C light irradiation was used to completely oxidize aqueous DMP solutions. Experiments were conducted at varying initial pH values (3.0, 6.0, and 9.0) and PMS concentrations (0–60 mM) to evaluate the effect of different reaction conditions on DMP treatment performance with the PMS/UV-C process. It was observed that lowering the initial reaction pH slightly improved the degradation rate of DMP. On the contrary, TOC abatements were slightly enhanced with increasing initial reaction pH. An adequate (optimum) PMS concentration of 40 mM resulted in the fastest and highest DMP degradation rates and efficiencies, respectively. At an initial concentration of 100 mg L-1, more than 95% DMP removal was obtained after only 20 min under PMS/UV-C treatment conditions. For the proposed adequate PMS concentration (40 mM) the lowest electrical energy per order (EE/O) value was calculated as 2.9 kW h m−3 order-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Benson, Hazard to the developing male reproductive system from cumulative exposure to phthalate esters-10 -dibutyl phthalate, diisobutyl phthalate, butylbenzyl phthalate, diethylhexyl phthalate, dipentyl phthalate, and 11 diisononyl phthalate, Regul. Toxicol. Pharmacol., 2009, 53, 90–101.

    Article  CAS  PubMed  Google Scholar 

  2. T. Fukuwatari, Y. Suzuki, E. Sugimoto and K. Shibata, Elucidation of the toxic mechanism of the plasticizers, phthalic acid esters, putative endocrine disrupters: Effects of dietary di(2-ethylhexyl)phthalate on the metabolism of tryptophan to niacin in rats, Biosci., Biotechnol., Biochem., 2002, 66, 705–710.

    Article  CAS  Google Scholar 

  3. S. Takeuchi, M. Lida, S. Kobayashi, K. Jin, T. Matsuda and H. Kojima, Differential effects of phthalate esters on transcriptional activities via human estrogen receptors a and b, and androgen receptor, Toxicology, 2005, 210, 223–233.

    Article  CAS  PubMed  Google Scholar 

  4. US EPA, National Primary Drinking Water Regulations, Federal Register; 40 CFR Chapter I, Part 141, US Environmental Protection Agency, Washington, DC, July 1, 1991.

    Google Scholar 

  5. European Union, Council Regulation (EEC), No. 793/93 of 23 March 1993 on the evaluation and control of the risks of existing substances (OJ L 84, 5 April 1993), European Union, Brussels.

    Google Scholar 

  6. J. Wang, L. Chen, H. Shi and Y. Qian, Microbial degradation of phthalic acid esters under anaerobic digestion of sludge, Chemosphere, 2000, 41, 1245–1248.

    Article  CAS  Google Scholar 

  7. C. A. Staples, D. R. Peterson, T. F. Parkerton and W. J. Adams, The environmental fate of phthalate esters: a literature review, Chemosphere, 1997, 35, 667–749.

    Article  CAS  Google Scholar 

  8. B. L. Yuan, X. Z. Li and N. Graham, Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems, Chemosphere, 2008, 72, 197–204.

    Article  CAS  PubMed  Google Scholar 

  9. M. J. Bauer, R. Herrmann, A. Martin and H. Zellmann, Chemody-namics, transport behaviour and treatment of phthalic acid esters in municipal landfill leachates, Water Sci. Technol., 1998, 38, 185–192.

    Article  CAS  Google Scholar 

  10. S. Parsons, Advanced Oxidation Processes for Water and Wastewater Treatment. IWA Publishing, London, 2004.

    Google Scholar 

  11. Handbook for Advanced Photochemical Oxidation Processes. EPA/625/R-98/004, US Environmental Protection Agency, Cincinnati, Ohio, 1998.

    Google Scholar 

  12. CCOT, The AOP Handbook, Calgon Carbon Oxidation Technologies, Markham, Ontario, 1995.

    Google Scholar 

  13. J. Fernandez, P. Maruthamuthu and J. Kiwi, Photobleaching and mineralization of Orange II by oxone and metal-ions involving Fenton-like chemistry under visible light, J. Photochem. Photobiol., A, 2004, 161, 185–192.

    Article  CAS  Google Scholar 

  14. B. Meunier, Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage, Chem. Rev., 1992, 92, 1411–1456.

    Article  CAS  Google Scholar 

  15. G. P. Anipsitakis and D. D. Dionysiou, Transition metal/UV-based advanced oxidation technologies for water decontamination, Appl. Catal., B, 2004, 54, 155–163.

    Article  CAS  Google Scholar 

  16. G. P. Anipsitakis, D. D. Dionysiou and M. A. Gonzalez, Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds: Implications of chloride ions, Environ. Sci. Technol., 2006, 40, 1000–1007.

    Article  CAS  PubMed  Google Scholar 

  17. C. J. Liang, I. L. Lee, I. Y. Hsu, C. P. Liang and Y. L. Lin, Persulfate oxidation of trichloroethylene with and without iron activation in porous media, Chemosphere, 2008, 70, 426–435.

    Article  CAS  PubMed  Google Scholar 

  18. L. Eberson, Electron Transfer Reactions in Organic Chemistry, Spring-Verlag, Berlin, 1987.

    Book  Google Scholar 

  19. Y-F. Huang and Y-H. Huang, Behavioral evidence of the dominant radicals and intermediates involved in Bisphenol A degradation using an efficient Co2+/PMS oxidation process, J. Hazard. Mater., 2009, 167, 418–426.

    Article  CAS  PubMed  Google Scholar 

  20. E. Hayon, A. Treinin and J. Wilf, Electronic spectra, photochemistry, and autoxidation mechanism of the sulfite-bisulfite-pyrosulfite systems. SO2, SO3, SO4, and SO5 radicals, J. Am. Chem. Soc., 1972, 94, 47–57.

    Article  CAS  Google Scholar 

  21. P. Neta, V. Madhavan, H. Zemel and R. W. Fessenden, Rate constants and mechanism of reaction of SO4 with aromatic compounds, J. Am. Chem. Soc., 1977, 99, 163–164.

    Article  CAS  Google Scholar 

  22. G. R. Peyton, The free-radical chemistry of persulfate-based total organic carbon analyzers, Mar. Chem., 1993, 41, 91–103.

    Article  CAS  Google Scholar 

  23. P. Neta, R.E: Huie and A. B. Ross, Rate constants for reactions of inorganic radicals in aqueous solution, J. Phys. Chem. Ref. Data, 1988, 17, 1027–1284.

    Article  CAS  Google Scholar 

  24. J. W. Petterson, Industrial Wastewater Treatment Technology, 2nd ed., Butterworth, Boston, 1985.

    Google Scholar 

  25. J. Sánchez-Avila, J. Bonet, G. Velasco and S. Lacorte, Determination and occurrence of phthalates, alkylphenols, bisphenol A, PBDEs, PCBs and PAHs in an industrial sewage grid discharging to a Municipal Wastewater Treatment Plant, Sci. Total Environ., 2009, 407, 4157–4167.

    Article  PubMed  CAS  Google Scholar 

  26. Z. L. Ye, C. Q. Cao, J. C. He, R. X. Zhang and H. Q. Hou, Photolysis of organic pollutants in wastewater with 206 nm UV irradiation, Chin. Chem. Lett., 2009, 20, 706–710.

    Article  CAS  Google Scholar 

  27. Y. Lu, F. Tang, Y. Wang, J. Zhao, X. Zeng, Q. Luo and L. Wang, Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge, J. Hazard. Mater., 2009, 168, 938–943.

    Article  CAS  PubMed  Google Scholar 

  28. M. Pirsaheba, A-R. Mesdaghiniab, S. J. Shahtaheric and A. A. Zinatizadehd, Kinetic evaluation and process performance of a fixed film bioreactor removing phthalic acid and dimethyl phthalate, J. Hazard. Mater., 2009, 167, 500–506.

    Article  CAS  Google Scholar 

  29. I. Nicole, J. De Laat, M. Dore, J. P. Duguet and C. Bonnel, Use of UV radiation in water treatment: measurement of photonic flux by hydrogen peroxide actinometry, Water Res., 1990, 24, 157–168.

    Article  CAS  Google Scholar 

  30. F. J. Benitez, J. L. Acero, F. J. Real, F. J. Rubio and A. I. Leal, The role of hydroxyl radicals for the decomposition of p-hydroxy phenylacetic acid in aqueous solutions, Water Res., 2001, 35, 1338–1343.

    Article  CAS  PubMed  Google Scholar 

  31. J. Beltran-Heredia, J. Torregrosa, J. R. Dominguez and J. A. Peres, Kinetics of the oxidation of p-hydroxybenzoic acid by the H2O2/UV system, Ind. Eng. Chem. Res., 2001, 40, 3104–3108.

    Article  CAS  Google Scholar 

  32. F. J. Real, F. J. Benitez, J. L. Acero and M. Gonzalez, Removal of diazinon by various advanced oxidation processes, J. Chem. Technol. Biotechnol., 2007, 82, 566–574.

    Article  CAS  Google Scholar 

  33. J. Sun, X. Li, J. Feng and X. Tian, Oxone/Co2+ oxidation as an advanced oxidation process: Comparison with traditional Fenton oxidation for treatment of landfill leachate, Water Res., 2009, 43, 4363–4369.

    Article  CAS  PubMed  Google Scholar 

  34. G. P. Anipsitakis and D. D. Dionysiou, Radical generation by the interaction of transition metals with common oxidants, Environ. Sci. Technol., 2004, 38, 3705–3712.

    Article  CAS  PubMed  Google Scholar 

  35. D. L. Ball and J. O. Edwards, The kinetics and mechanism of the decomposition of Caro’s acid (Part I), J. Am. Chem. Soc., 1956, 78, 1125–1129.

    Article  CAS  Google Scholar 

  36. E-E. Chang, H-J. Hsing, P-C. Chiang, M-Y. Chen and J-Y. Shyng, The chemical and biological characteristics of coke-oven wastewater by ozonation, J. Hazard. Mater., 2008, 156, 560–567.

    Article  CAS  PubMed  Google Scholar 

  37. A. S. Stasinakis, Use of selected advanced oxidation processes (AOPs) for wastewater treatment - A mini review, Global NEST Journal, 2008, 10, 376–385.

    Google Scholar 

  38. A. Rezaee, M. T. Ghaneian, S. J. Hashemian, G. Moussavi, A. Khavanin and G. Ghanizadeh, Decolorization of reactive blue 19 dye from textile wastewater by the UV/H2O2 process, J. Appl. Sci., 2008, 8, 1108–1112.

    Article  CAS  Google Scholar 

  39. M. A. Behnajady, N. Modirshahla and M. Shokri, Photodestruc-tion of Acid Orange 7 (AO7) in aqueous solutions by UV/H2O2: influence of operational parameters, Chemosphere, 2004, 55, 129–134.

    Article  CAS  PubMed  Google Scholar 

  40. I. Arslan-Alaton, A. Akin and T. Olmez-Hanci, An optimization and modeling approach for H2O2/UV-C oxidation of a commercial nonionic textile surfactant using central composite design, J. Chem. Technol. Biotechnol., 2009, 85, 493–501.

    Google Scholar 

  41. P. Gogate and A. Pandit, A review of imperative technologies for wastewater treatment II: hybrid methods, Adv. Environ. Res., 2004, 8, 553–597.

    Article  CAS  Google Scholar 

  42. C-H. Wu and H-Y. Ng, Degradation of C.I. reactive red 2 (RR2) using ozone-based systems: Comparisons of decolorization efficiency and power consumption, J. Hazard. Mater., 2008, 152, 120–127.

    Article  CAS  PubMed  Google Scholar 

  43. J. R. Bolton, K. G. Bircger, W. Tumas and C. A. Tolman, Figure-of merit for the technical development and application of advanced oxidation technologies for both electric- and solar-derived systems, Pure Appl. Chem., 2001, 73, 627–637.

    Article  CAS  Google Scholar 

  44. N. Daneshvar, A. Aleboyeh and A. R. Khataee, The evaluation of electrical energy per order (EEO) for photooxidative decolorization of four textile dye solutions by the kinetic model, Chemosphere, 2005, 59, 761–767.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tugba Olmez-Hanci.

Additional information

This paper is published as part of the themed issue of contributions from the 6th European Meeting on Solar Chemistry and Photocatalysis: Environmental Applications held in Prague, Czech Republic, June 2010.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmez-Hanci, T., Imren, C., Kabdaşlı, I. et al. Application of the UV-C photo-assisted peroxymonosulfate oxidation for the mineralization of dimethyl phthalate in aqueous solutions. Photochem Photobiol Sci 10, 408–413 (2011). https://doi.org/10.1039/c0pp00173b

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c0pp00173b