Skip to main content

Advertisement

Log in

Molecular catalysts for wateroxidation toward artificial photosynthesis

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Artificial photosynthesis is anticipated as one of the promising clean energy-providing systems for the future. The development of an efficient catalyst for wateroxidation to evolve O2 is a key task to yield a breakthrough for construction of artificial photosynthetic devices. Recently, significant progress has been reported in the development of the molecular catalysts for wateroxidation based on manganese, ruthenium and iridium. The molecular aspects of the catalysts reported in the last decade were reviewed to provide hints to design an efficient catalyst, as well as to gain clues to reveal the mechanism of O2 evolution at photosynthetic oxygen evolving complex in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Yachandra, K. Sauer and M. P. Klein, Manganese cluster in photosynthesis: Where plants oxidize water to dioxygen, Chem. Rev., 1996, 96, 2927–2950.

    Article  CAS  PubMed  Google Scholar 

  2. J. P. McEvoy and G. W. Brudvig, Water-splitting chemistry of photosystem II, Chem. Rev., 2006, 106, 4455–4483.

    Article  CAS  PubMed  Google Scholar 

  3. J. Dasgupta, G. M. Ananyev and G. C. Dismukes, Photoassembly of the water-oxidizing complex in photosystem II, Coord. Chem. Rev., 2008, 252, 347–360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. N. Kamiya, J.-R. Shen, Crystal structure of oxygen-evolving photosystem II from thermosynechococcus vulcanus at 3.7 Å resolution, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 98–103.

    Article  CAS  PubMed  Google Scholar 

  5. K. N. Ferreira, T. M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, Architecture of the photosynthetic oxygen-evolving center, Science, 2004, 303, 1831–1838.

    Article  CAS  PubMed  Google Scholar 

  6. B. Loll, J. Kern, W. Saenger, A. Zouni and J. Biesiadka, Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II, Nature, 2005, 438, 1040–1044.

    Article  CAS  PubMed  Google Scholar 

  7. J. Yano, J. Kern, K. Sauer, M. J. Latimer, Y. Pushkar, J. Biesiadka, B. Loll, W. Saenger, J. Messinger, A. Zouni and V. K. Yachandra, Where water is oxidized to dioxygen: Structure of the photosynthetic Mn4Ca cluster, Science, 2006, 314, 821–825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. J. Meyer, Chemical approaches to artificial photosynthesis, Acc. Chem. Res., 1989, 22, 163–170.

    Article  CAS  Google Scholar 

  9. J. H. Alstrum-Acevedo, M. K. Brennaman and T. J. Meyer, Chemical approaches to artificial photosynthesis. 2, Inorg. Chem., 2005, 44, 6802–6827.

    Article  CAS  PubMed  Google Scholar 

  10. M. Yagi and M. Kaneko, Molecular catalysts for water oxidation, Chem. Rev., 2001, 101, 21–35.

    Article  CAS  PubMed  Google Scholar 

  11. R. Manchanda, G. W. Brudvig and R. H. Crabtree, High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II, Coord. Chem. Rev., 1995, 144, 1–38.

    Article  CAS  Google Scholar 

  12. W. Rüttinger and G. C. Dismukes, Synthetic water-oxidation catalysts for artificial photosynthetic water oxidation, Chem. Rev., 1997, 97, 1–24.

    Article  PubMed  Google Scholar 

  13. S. Mukhopadhyay, S. K. Mandal, S. Bhaduri and W. H. Armstrong, Manganese clusters with relevance to photosystem II, Chem. Rev., 2004, 104, 3981–4026.

    Article  CAS  PubMed  Google Scholar 

  14. C. W. Cady, R. H. Crabtree and G. W. Brudvig, Functional models for the oxygen-evolving complex of photosystem II, Coord. Chem. Rev., 2008, 252, 444–455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Limburg, J. S. Vrettos, L. M. Liable-Sands, A. L. Rheingold, R. H. Crabtree and G. W. Brudvig, A functional model for O–O bond formation by the O2-evolving complex in photosystem II, Science, 1999, 283, 1524–1527.

    Article  CAS  PubMed  Google Scholar 

  16. J. Limburg, J. S. Vrettos, H. Y. Chen, J. C. de Paula, R. H. Crabtree and G. W. Brudvig, Characterization of the O2-evolving reaction catalyzed by [(terpy)(H2O)MnIII(O)2MnIV(OH2)(terpy)](NO33 (terpy = 2,2′: 6′,2″-terpyridine), J. Am. Chem. Soc., 2001, 123, 423–430.

    Article  CAS  PubMed  Google Scholar 

  17. R. Tagore, H. Chen, H. Zhang, R. H. Crabtree and G. W. Brudvig, Homogeneous water oxidation by a di-μ-oxo dimanganese complex in the presence of Ce4+, Inorg. Chim. Acta, 2007, 360, 2983–2989.

    Article  CAS  Google Scholar 

  18. M. Yagi and K. Narita, Catalytic O2 evolution from water induced by adsorption of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ complex onto clay compounds, J. Am. Chem. Soc., 2004, 126, 8084–8085.

    Article  CAS  PubMed  Google Scholar 

  19. P. Kurz, G. Berggren, M. F. Anderlund and S. Styring, Oxygen evolving reactions catalyzed by synthetic manganese complexes: A systematic screening, Dalton Trans., 2007, 4258–4261.

    Google Scholar 

  20. C. Baffert, S. Romain, A. Richardot, J.-C. Lepretre, B. Lefebvre, A. Deronzier and M.-N. Collomb, Electrochemical and chemical formation of [Mn4IVO5(terpy)4(H2O)2]6+, in relation with the photosystem II oxygen-evolving center model [Mn2III,IVO2(terpy)2(H2O)2]3+, J. Am. Chem. Soc., 2005, 127, 13694–13704.

    Article  CAS  PubMed  Google Scholar 

  21. K. Narita, T. Kuwabara, K. Sone, K. Shimizu and M. Yagi, Characterization and activity analysis of catalytic water oxidation induced by hybridization of [(OH2)(terpy)Mn(μ-O)2Mn(terpy)(OH2)]3+ and clay compounds, J. Phys. Chem. B, 2006, 110, 23107–23114.

    Article  CAS  PubMed  Google Scholar 

  22. M. Yagi, K. Narita, S. Maruyama, K. Sone, T. Kuwabara and K. Shimizu, Artificial model of photosynthetic oxygen evolving complex: Catalytic O2 production from water by di-μ-oxo manganese dimers supported by clay compounds, Biochim. Biophys. Acta-Bioenerg., 2007, 1767, 660–665.

    Article  CAS  Google Scholar 

  23. A. K. Poulsen, A. Rompel, C. J. McKenzie, Water oxidation catalyzed by a dinuclear Mn complex: A functional model for the oxygen-evolving center of photosystem II, Angew. Chem., Int. Ed., 2005, 44, 6916–6920.

    Article  CAS  Google Scholar 

  24. W. F. Rüttinger, C. Campana and G. C. Dismukes, Synthesis and characterization of Mn4O4L6 complexes with cubane-like core structure: A new class of models of the active site of the photosynthetic water oxidase, J. Am. Chem. Soc., 1997, 119, 6670–6671.

    Article  Google Scholar 

  25. W. Rüttinger and G. C. Dismukes, Conversion of core oxos to water molecules by 4e /4H+ reductive dehydration of the Mn4O26+ core in the manganese-oxo cubane complex Mn4O4(Ph2PO26: A partial model for photosynthetic water binding and activation, Inorg. Chem., 2000, 39, 1021–1027.

    Article  CAS  Google Scholar 

  26. W. Rüttinger, M. Yagi, K. Wolf, S. Bernasek and G. C. Dismukes, O2 evolution from the manganese-oxo cubane core Mn4O46+:A molecular mimic of the photosynthetic water oxidation enzyme?, J. Am. Chem. Soc., 2000, 122, 10353–10357.

    Article  CAS  Google Scholar 

  27. M. Yagi, K. V. Wolf, P. J. Baesjou, S. L. Bernasek and G. C. Dismukes, Selective photoproduction of O2 from the Mn4O4 cubane core: A structural and functional model for the photosynthetic water-oxidizing complex, Angew. Chem., Int. Ed., 2001, 40, 2925–2928.

    Article  CAS  Google Scholar 

  28. Y. Naruta, M. Sasayama and T. Sasaki, Oxygen evolution by oxidation of water with manganese porphyrin dimers, Angew. Chem., Int. Ed. Engl., 1994, 33, 1839–1841.

    Article  Google Scholar 

  29. Y. Shimazaki, T. Nagano, H. Takesue, B.-H. Ye, F. Tani and Y. Naruta, Characterization of a dinuclear MnV=O complex and its efficient evolution of O2 in the presence of water, Angew. Chem., Int. Ed., 2004, 43, 98–100.

    Article  CAS  Google Scholar 

  30. M. Yagi, S. Tokita, K. Nagoshi, I. Ogino and M. Kaneko, Activity analysis of a water oxidation catalyst immobilized in a polymer membrane, J. Chem. Soc., Faraday Trans., 1996, 92, 2457–2461.

    Article  CAS  Google Scholar 

  31. M. Yagi, K. Kinoshita and M. Kaneko, Activity analysis of electrochemical water oxidation catalyst confined in a coated-polymer membrane, J. Phys. Chem., 1996, 100, 11098–11100.

    Article  CAS  Google Scholar 

  32. M. Yagi, K. Kinoshita and M. Kaneko, Enhancing effect of an amino acid residue model for the electrochemical water oxidation catalyst confined in a polymer membrane, J. Phys. Chem. B, 1997, 101, 3957–3960.

    Article  CAS  Google Scholar 

  33. M. Yagi, K. Nagoshi and M. Kaneko, Cooperative catalysis and critical decomposition distances between molecular water oxidation catalysts incorporated in a polymer membrane, J. Phys. Chem. B, 1997, 101, 5143–5146.

    Article  CAS  Google Scholar 

  34. M. Yagi, N. Sukegawa, M. Kasamastu and M. Kaneko, Cooperative catalysis and critical decomposition distances in water oxidation by the mononuclear ammineruthenium(III) complex in a nafion membrane, J. Phys. Chem. B, 1999, 103, 2151–2154.

    Article  CAS  Google Scholar 

  35. M. Yagi, N. Sukegawa and M. Kaneko, Analysis of catalytic water oxidation by cis-tetraamminedichlororuthenium(III) complex incorporated in a polymer membrane, J. Phys. Chem. B, 2000, 104, 4111–4114.

    Article  CAS  Google Scholar 

  36. M. Yagi, Y. Osawa, N. Sukegawa and M. Kaneko, Catalytic activity of tri(μ-chloro)-bridged dinuclear ruthenium complex confined in a polymer membrane as an artificial model of photosynthetic oxygen evolving center, Langmuir, 1999, 15, 7406–7408.

    Article  CAS  Google Scholar 

  37. I. Ogino, K. Nagoshi, M. Yagi and M. Kaneko, Activity analysis of a water oxidation catalyst adsorbed on an inorganic particle matrix, J. Chem. Soc., Faraday Trans., 1996, 92, 3431–3434.

    Article  CAS  Google Scholar 

  38. S. W. Gersten, G. J. Samuels and T. J. Meyer, Catalytic oxidation of water by an oxo-bridged ruthenium dimer, J. Am. Chem. Soc., 1982, 104, 4029–4030.

    Article  CAS  Google Scholar 

  39. F. Liu, J. J. Concepcion, J. W. Jurss, T. Cardolaccia, J. L. Templeton and T. J. Meyer, Mechanisms of water oxidation from the blue dimer to photosystem II, Inorg. Chem., 2008, 47, 1727–1752.

    Article  CAS  PubMed  Google Scholar 

  40. J. K. Hurst, J. L. Cape, A. E. Clark, S. Das and C. Qin, Mechanisms of water oxidation catalyzed by ruthenium diimine complexes, Inorg. Chem., 2008, 47, 1753–1764.

    Article  CAS  PubMed  Google Scholar 

  41. F. P. Rotzinger, S. Munavalli, P. Comte, J. K. Hurst, M. Graetzel, F.-J. Pern and A. J. Frank, A molecular water-oxidation catalyst derived from ruthenium diaqua bis(2,2′-bipyridyl-5,5′-dicarboxylic acid), J. Am. Chem. Soc., 1987, 109, 6619–6626.

    Article  CAS  Google Scholar 

  42. P. Comte, M. K. Nazeeruddin, F. P. Rotzinger, A. J. Frank and M. Graetzel, Artificial analogues of the oxygen-evolving complex in photosynthesis: The oxo-bridged ruthenium dimer L2(H2O)RuIII–O–RuIII(H2O)L2 (L = 2,2′-bipyridyl-4,4′-dicarboxylate), J. Mol. Catal., 1989, 52, 63–84.

    Article  CAS  Google Scholar 

  43. K. Nagoshi, S. Yamashita, M. Yagi and M. Kaneko, Catalytic activity of [(bpy)2(H2O)Ru–O–Ru(H2O)(bpy)2]4+ for four-electron water oxidation, J. Mol. Catal. A: Chem., 1999, 144, 71–76.

    Article  CAS  Google Scholar 

  44. J. P. Collin and J. P. Sauvage, Synthesis and study of mononuclear ruthenium(II) complexes of sterically hindering diimine chelates. Implications for the catalytic oxidation of water to molecular oxygen, Inorg. Chem., 1986, 25, 135–141.

    Article  CAS  Google Scholar 

  45. T. J. Meyer and M. H. V. Huynh, The remarkable reactivity of high oxidation state ruthenium and osmium polypyridyl complexes, Inorg. Chem., 2003, 42, 8140–8160.

    Article  CAS  PubMed  Google Scholar 

  46. D. Geselowitz and T. J. Meyer, Water oxidation by [(bpy)2(O)RuVORuV(O)(bpy)2]4+. An oxygen-labeling study, Inorg. Chem., 1990, 29, 3894–3896.

    Article  CAS  Google Scholar 

  47. J. A. Gilbert, D. S. Eggleston, W. R. Murphy, D. A. Geselowitz, S. W. Gersten, D. J. Hodgson and T. J. Meyer, Structure and redox properties of the water-oxidation catalyst [(bpy)2(OH2)RuoRu(OH2)(bpy)2]4+, J. Am. Chem. Soc., 1985, 107, 3855–3864.

    Article  CAS  Google Scholar 

  48. C. W. Chronister, R. A. Binstead, J. F. Ni and T. J. Meyer, Mechanism of water oxidation catalyzed by the μ-oxo dimer [(bpy)2(OH2)RuIIIORuIII(OH2)(bpy)2]4+, Inorg. Chem., 1997, 36, 3814–3815.

    Article  CAS  Google Scholar 

  49. R. A. Binstead, C. W. Chronister, J. F. Ni, C. M. Hartshorn and T. J. Meyer, Mechanism of water oxidation by the μ-oxo dimer [(bpy)2(OH2)RuIIIORuIII(OH2)(bpy)2]4+, J. Am. Chem. Soc., 2000, 122, 8464–8473.

    Article  CAS  Google Scholar 

  50. H. Yamada and J. K. Hurst, Resonance Raman, optical spectroscopic, and EPR characterization of the higher oxidation states of the water oxidation catalyst, cis,cis-[(bpy)2Ru(OH2)]2O4+, J. Am. Chem. Soc., 2000, 122, 5303–5311.

    Article  CAS  Google Scholar 

  51. Y. Lei and J. K. Hurst, Dynamical investigations of the catalytic mechanisms of water oxidation by the [(bpy)2Ru(OH2)]2O4+ ion, Inorg. Chim. Acta, 1994, 226, 179–185.

    Article  CAS  Google Scholar 

  52. H. Yamada, W. F. Siems, T. Koike and J. K. Hurst, Mechanisms of water oxidation catalyzed by the cis,cis-[(bpy)2Ru(OH2)]2O4+ ion, J. Am. Chem. Soc., 2004, 126, 9786–9795.

    Article  CAS  PubMed  Google Scholar 

  53. C. Sens, I. Romero, M. Rodriguez, A. Llobet, T. Parella, J. Benet-Buchholz, A new Ru complex capable of catalytically oxidizing water to molecular dioxygen, J. Am. Chem. Soc., 2004, 126, 7798–7799.

    Article  CAS  PubMed  Google Scholar 

  54. T. Wada, K. Tsuge and K. Tanaka, Electrochemical oxidation of water to dioxygen catalyzed by the oxidized form of the bis(ruthenium-hydroxo) complex in H2O, Angew. Chem., Int. Ed., 2000, 39, 1479–1482.

    Article  CAS  Google Scholar 

  55. T. Wada, K. Tsuge and K. Tanaka, Syntheses and redox properties of bis(hydroxoruthenium) complexes with quinone and bipyridine ligands. Water-oxidation catalysis, Inorg. Chem., 2001, 40, 329–337.

    Article  CAS  PubMed  Google Scholar 

  56. Reprinted with permission from ref. 54. Copyright © 2000 WILEY-VCH Verlag GmbH & Co. KGaA.

  57. J. T. Muckerman, D. E. Polyansky, T. Wada, K. Tanaka and E. Fujita, Water oxidation by a ruthenium complex with noninnocent quinone ligands: Possible formation of an O–O bond at a low oxidation state of the metal, Inorg. Chem., 2008, 47, 1787–1802.

    Article  CAS  PubMed  Google Scholar 

  58. R. Zong and R. P. Thummel, A new family of Ru complexes for water oxidation, J. Am. Chem. Soc., 2005, 127, 12802–12803.

    Article  CAS  PubMed  Google Scholar 

  59. Reprinted with permission from ref. 58. Copyright 2005 American Chemical Society.

  60. M. Yagi, S. Tajima, M. Komi and K. Sone, Catalytic activities of mononuclear ruthenium complexes with 2,2′:6′,2″-terpyridine ligands for water oxidation, 1E6-36, Abstract book CD-ROM, 88th Spring Meeting of Chemical Society of Japan (CSJ).

  61. N. D. McDaniel, F. J. Coughlin, L. L. Tinker and S. Bernhard, Cyclometalated iridium(III) aquo complexes: Efficient and tunable catalysts for the homogeneous oxidation of water, J. Am. Chem. Soc., 2008, 130, 210–217.

    Article  CAS  PubMed  Google Scholar 

  62. Reprinted with permission from ref. 61. Copyright 2008 American Chemical Society.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayuki Yagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yagi, M., Syouji, A., Yamada, S. et al. Molecular catalysts for wateroxidation toward artificial photosynthesis. Photochem Photobiol Sci 8, 139–147 (2009). https://doi.org/10.1039/b811098k

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b811098k

Navigation