Skip to main content
Log in

The complex between 9-(n-decanyl)acridone and Bovine Serum Albumin. Part 2. What do fluorescence probes probe?

  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Factor analysis indicates that the fluorescence spectrum of 9-(n-decanyl)acridone (NDA), when bound to Bovine Serum Albumin (BSA), can be described quite adequately as the sum of two spectra, attributed to a “free” and a “bound” species. Kinetic evidence indicates that upon electronic excitation the system undergoes a net increase in free NDA, relative to the equilibrium distribution in the ground state, which would be consistent with Lewis acid sites on BSA being responsible for the binding. The system does not attain a position of equilibrium during the duration of the excited singlet state. This permits the determination of excited state rate constants for binding and unbinding of NDA on BSA, as well as the decay constants for the two forms of the probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. N. Lunardi, J. B. S. Bonilha and A. C. Tedesco, Stern-Volmer quenching and binding constants of 10-alkyl-9(10H)-acridone probes in SDS and BSA, J. Lumin., 2002, 99, 61–72.

    Article  CAS  Google Scholar 

  2. A. K. Bordbar, A. A. Saboury, A. A. Moosavi-Movahedi The shapes of Scatchard plots for systems with two sets of binding sites, Biochem. Educ., 1996, 24, 172–175.

    Article  CAS  Google Scholar 

  3. M. E. Georgiou, C. A. Georgiou and M. A. Koupparis, Automated flow injection gradient technique for binding studies of micromolecules to proteins using potentiometric sensors: application to bovine serum albumin with anilinonaphthalenesulfonate probe and drugs, Anal. Chem., 1999, 71, 2541–2550.

    Article  CAS  PubMed  Google Scholar 

  4. A. E. Mantaka-Marketou, F. S. Varveri, G. Vassilopoulos and J. Nikokavouras, Some aspects of the lucigenin light reaction, J. Photochem. Photobiol. A: Chem., 1989, 48, 337–340.

    Article  CAS  Google Scholar 

  5. K. W. Lee, L. A. Singer and K. D. Legg, Chemiluminescence from the reaction of singlet oxygen with 10,10′-dimethyl-9,9′-biacridylidene. A reactive 1,2-dioxetane, J. Org. Chem., 1976, 41, 2685–2688.

    Article  CAS  Google Scholar 

  6. K. Papadoupoulos, S. Spartalis, J. Nikokavouras, K. Mitsoulis and D. Dimotikali, Chemiluminescence of N,N′-dialkyl-9,9′- biacridylidenes in homogeneous and micellar media, J. Photochem. Photobiol. A: Chem., 1994, 83, 15–19.

    Article  Google Scholar 

  7. G. W. Peng and W. L. Chiou, Study on the binding of trichloromonofluoromethane by bovine serum albumin using a fluorescent probe technique, Pharmacology, 1976, 14, 58–66.

    Article  CAS  PubMed  Google Scholar 

  8. H. X. Min and D. C. Carter, Atomic structure and chemistry of human serum albumin, Nature, 1992, 358, 209–215.

    Article  Google Scholar 

  9. B. Nerli and G. Pico, Influence of the medium conditions on the 1-anilino-8-naphthalene sulfonate-bovine serum albumin binding, Arch. Int. Physiol. Biochim. Biophys., 1994, 102, 5–8.

    CAS  PubMed  Google Scholar 

  10. N. A. Avdulov, S. V. Chochina, V. A. Daragan, F. Schroeder, K. H. Mayo and W. G. Wood, Direct binding of ethanol to Bovine Serum Albumin: a fluorescent and 13C nmr multiplet relaxation study, Biochem., 1996, 35, 340–347.

    Article  CAS  Google Scholar 

  11. A. E. Thumser, J. E. Voysey and D. C. Wilton, The binding of lysophospholipids to rat liver fatty acid-binding protein and albumin, Biochem. J., 1994, 301, 801–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. K. Takeda, I. Yoshida and K. Yamamoto, Changes of fluorescence lifetime and rotational correlation time of bovine serum albumin labeled with 1-dimethylaminonaphthalene-5- sulfonyl chloride in guanidine and thermal denaturations, J. Protein Chem., 1991, 10, 17–23.

    Article  CAS  PubMed  Google Scholar 

  13. D. C. Wilton The fatty acid analogue 11-(dansylamino)undecanoic acid is a fluorescent probe for the bilirubin-binding sites of albumin and not for the high-affinity fatty acid-binding sites, Biochem. J., 1990, 270, 163–166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. K. M. Hirshfield, D. Toptygin, G. Grandhige, H. Kim, B. Z. Packard and L. Brand, Steady-state and time-resolved fluorescence measurements for studying molecular interactions: interaction of a calcium-binding probe with proteins, Biophys. Chem., 1996, 62, 25–38.

    Article  CAS  PubMed  Google Scholar 

  15. G. V. Richieri, A. Anel and A. M. Kleinfeld, Interaction of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB, Biochemistry, 1993, 32, 7574–7580.

    Article  CAS  PubMed  Google Scholar 

  16. Y. J. Jin, W. L. Li and Q. R. Wang, Tb(III) as a fluorescent probe for the structure of bovine serum albumin, Biochem. Biophys. Res. Commun., 1991, 177, 474–479.

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Waheed, K. S. Rao and P. D. Gupta, Mechanism of dye binding in the protein assay using eosin dyes, Anal. Biochem., 2000, 287, 73–79.

    Article  CAS  PubMed  Google Scholar 

  18. B. Pal, P. K. Bajpai, T. S. Basu Baul Binding of 5-(2′-carboxyphenyl)azoquinolin-8-ol to bovine serum albumin: a spectroscopy study, Spectrochim. Acta, Part A, 2000, 56, 2453–2458.

    Article  Google Scholar 

  19. Y. Nakamaru and C. Sato, Identical independent sites for dye ligand on bovine serum albumin demonstrated by multivariate analysis, Biochim. Biophys. Acta, 2000, 1480, 321–328.

    Article  CAS  PubMed  Google Scholar 

  20. G. Zolese, G. Falcioni, E. Bertoli, R. Galeazzi, M. Wozniak, Z. Wypych, E. Gratton and A. Ambrosini, Steady-state and time resolved fluorescence of albumins interacting with N-oleylethanolamine, a component of the endogenous N-acylethanolamines, Proteins, 2000, 40, 39–48.

    Article  CAS  PubMed  Google Scholar 

  21. M. L. Silber and B. B. Davitt, Preparative binding of Coomassie brilliant blue to bovine serum, Prep. Biochem. Biotechnol., 2000, 30, 209–229.

    Article  CAS  PubMed  Google Scholar 

  22. E. L. Gelamo, C. H. Silva, H. Imasato and M. Tabak, Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modeling, Biochim. Biophys. Acta, 2002, 1594, 84–99.

    Article  CAS  PubMed  Google Scholar 

  23. J. Yuan and K. Matsumoto, Synthesis of a new tetradentate β-diketonate-europium chelate and its application for time-resolved fluorimetry of albumin, J. Pharm. Biomed. Anal., 1997, 15, 1397–1403.

    Article  CAS  PubMed  Google Scholar 

  24. P. Infelta, M. Grätzel and J. K. Thomas, Luminescence decay of hydrophobic molecules solubilized in aqueous micellar systems. Kinetic model, J. Phys. Chem., 1974, 78, 190–195.

    Article  CAS  Google Scholar 

  25. M. Almgren, P. Hannsson, E. Mukhtar, J. van Stam Aggregation of alkyltrimethylammonium surfactants in aqueous poly(styrenesulfonate) solutions, Langmuir, 1992, 8, 2405–2412.

    Article  CAS  Google Scholar 

  26. K. Thalberg, J. van Stam, C. Lindblad, M. Almgren and B. Lindman, Time-resolved fluorescence and self-diffusion studies in systems of a cationic surfactant and an anionic polyelectrolyte, J. Phys. Chem., 1991, 95, 8975–8982.

    Article  CAS  Google Scholar 

  27. M. Almgren, F. Grieser and J. K. Thomas, Dynamic and static aspects of solubilization of neutral arenes in ionic micellar solutions, J. Am. Chem. Soc., 1979, 101, 279–291.

    Article  CAS  Google Scholar 

  28. S. S. Atik and J. K. Thomas, Transport of photoproduced ions in water in oil microemulsions: movement of ions from one water pool to another, J. Am. Chem. Soc., 1981, 103, 3543–3550.

    Article  CAS  Google Scholar 

  29. W. H. Lawton and E. A. Sylvestre, Self modeling curve resolution, Technometrics, 1971, 13, 617–633.

    Article  Google Scholar 

  30. V. V. Volkov Separation of additive mixture spectra by a self-modeling method, Appl. Spectrosc., 1996, 50, 320–326.

    Article  CAS  Google Scholar 

  31. Matlab, Version 5.3, Release 11, The Mathworks, Inc., Cambridge, MA 02142.

  32. E. R. Malinowski, Theory of error in factor analysis, Anal. Chem., 1977, 49, 606–612.

    Article  CAS  Google Scholar 

  33. E. R. Malinowski, Determination of the number of factors and the experimental error in a data matrix, Anal. Chem., 1977, 49, 612–617.au]33_G. Scatchard The attraction of proteins for small molecules and ions, Ann. N. Y. Acad. Sci., 1948, 51, 660–672.

    Article  CAS  Google Scholar 

  34. K. Tsutsumi and H. Shizuka, Proton transfer and acidity constant in the excited state of naphthols by dynamic analyses, Z. Phys. Chem. (Wiesbaden), 1980, 122, 129–142.

    Article  CAS  Google Scholar 

  35. M. Hauser Fluorescence and the kinetics of excited singlet states, Acta Phys. Chem., 1984, 30, 7–27.

    CAS  Google Scholar 

  36. R. Krishnan, T. G. Fillingim, J. Lee and G. W. Robinson, Solvent structural effects on proton dissociation, J. Am. Chem. Soc., 1990, 112, 1353–1357.

    Article  CAS  Google Scholar 

  37. T. D. S. Tseluiko and I. M. Brinn, Excited state acidity of bifunctional molecules. 4. General solution of lifetimes in systems with three coupled species, J. Photochem. Photobiol. A: Chem., 1994, 84, 139–142.

    Article  CAS  Google Scholar 

  38. C. E. M Carvalho, I. M. Brinn, A. V. Pinto, M. C. F. R. Pinto Excited state acidity of bifunctional compounds. 6. A novel, high fluorescence quantum yield, excited state intramolecular proton transfer compound: 2-hydroxyphenyl-lapazole in non-protic solvents, J. Photochem. Photobiol. A: Chem., 1999, 123, 61–65.

    Article  CAS  Google Scholar 

  39. H. Beens, K. H. Grellmann, M. Gurr and A. H. Weller, Effect of solvent and temperature on proton transfer reactions of excited molecules, Discuss. Faraday Soc., 1965, 39, 183–193.

    Article  Google Scholar 

  40. T. S. Godfrey, G. Porter and P. Suppan, proton transfer during reactions in the excited state, Discuss. Faraday Soc., 1965, 39, 194–199.

    Article  Google Scholar 

  41. L. G. Arnaut, S. J. Formosinho Excited-state proton transfer reactions. I. Fundamentals and intermolecular reactions, J. Photochem. Photobiol., A: Chem., 1993, 75, 1–20.

    Article  CAS  Google Scholar 

  42. S. S. Qu, Y. Liu, T. Z. Wang and W. Y. Gao, Thermodynamics of binding of cadmium to bovine serum albumin, Chemosphere, 2002, 46, 1211–1214.

    Article  CAS  PubMed  Google Scholar 

  43. S. G. Schulman, W. J. M. Underberg pH-dependence of the fluorescence of acridone in aqueous mineral acid solutions, Anal. Chim. Acta, 1979, 107, 411–414.

    Article  CAS  Google Scholar 

  44. S. G. Schulman, B. S. Vogt and M. W. Lowell, Kinetics and Equilibria of proton-transfer reactions of weak bases in the lowest excited singlet state, Chem. Phys. Lett., 1980, 75, 224–229.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

For Part 1 see ref. 1

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nain Lunardi, C., Claudio Tedesco, A., Kurth, T.L. et al. The complex between 9-(n-decanyl)acridone and Bovine Serum Albumin. Part 2. What do fluorescence probes probe?. Photochem Photobiol Sci 2, 954–959 (2003). https://doi.org/10.1039/b301789c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b301789c

Navigation