Issue 23, 2002

Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity

Abstract

A detailed study of the morphological changes that occur during the ageing of a copper zinc oxide (Cu ∶ Zn 2 ∶ 1), formed by co-precipitation from the nitrates is reported and discussed. Using TEM and STEM-EDS, the composition and morphology of the non-calcined precursor are observed to change from an initial amorphous state to micro-crystalline aurichalcite and rosasite, which are present as needles and platelets, respectively. In addition, the detailed microscopy study has shown that a dispersion of Cu-rich nanoparticles is progressively formed as the precipitate ages. On calcination at 550 °C, an intimate mixture of CuO and ZnO crystallites is formed, and using STEM-EDS analysis it is shown that the CuO contains Zn, and the ZnO contains Cu in solid solution. The highest incorporation of Zn into CuO correlates with the highest concentration of the Cu-rich nanoparticles in the precursor. The catalytic activity of the calcined copper zinc oxide is also correlated with the highest incorporation of Zn into CuO for the oxidation of carbon monoxide at 20 °C.

Article information

Article type
Paper
Submitted
06 Aug 2002
Accepted
15 Oct 2001
First published
28 Oct 2002

Phys. Chem. Chem. Phys., 2002,4, 5915-5920

Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity

D. M. Whittle, A. A. Mirzaei, J. S. J. Hargreaves, R. W. Joyner, C. J. Kiely, S. H. Taylor and G. J. Hutchings, Phys. Chem. Chem. Phys., 2002, 4, 5915 DOI: 10.1039/B207691H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements