Issue 9, 2000

Abstract

As laser ablation becomes more ubiquitous for direct solid sampling with inductively coupled plasma mass spectrometry (ICP-MS), the need to understand and mitigate fractionation (non-stoichiometric generation of vapor species) becomes critical. The influence of laser-beam wavelength on fractionation is not well established; in general, it is believed that fractionation is reduced as the wavelength becomes shorter. This manuscript presents an investigation of fractionation during ablation of NIST glasses and calcite using three UV wavelengths (157 nm, 213 nm and 266 nm). Fractionation can be observed for all wavelengths, depending in each case on the laser-beam irradiance and the number of laser pulses at each sample-surface location. The transparency of the sample influences the amount of sample ablated (removed) at each wavelength, and the extent of fractionation. Pb/Ca and Pb/U ratios are used as examples to demonstrate the degree of fractionation at the different wavelengths.

Article information

Article type
Paper
Submitted
30 May 2000
Accepted
10 Jun 2000
First published
09 Aug 2000

J. Anal. At. Spectrom., 2000,15, 1115-1120

Influence of wavelength on fractionation in laser ablation ICP-MS

R. E. Russo, X. L. Mao, O. V. Borisov and H. Liu, J. Anal. At. Spectrom., 2000, 15, 1115 DOI: 10.1039/B004243I

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements