Skip to main content
Log in

Mechanistic insight of the photodynamic effect induced by tri- and tetra-cationic porphyrins on Candida albicans cells

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The photodynamic mechanism of action induced by 5-(4-trifluorophenyl)-10,15,20-tris(4-N,N,N-trimethylammoniumphenyl)porphyrin (TFAP3+), 5,10,15,20-tetrakis(4-N,N,N-trimethyl-ammoniumphenyl)porphyrin (TMAP4+) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphyrin (TMPyP4+) was investigated on Candida albicans cells. These cationic porphyrins are effective photosensitizers, producing a ~5 log decrease of cell survival when the cultures are incubated with 5 mM photosensitizer and irradiated for 30 min with visible light. Studies under anoxic conditions indicated that oxygen is necessary for the mechanism of action of photodynamic inactivation of this yeast. Furthermore, photoinactivation of C. albicans cells was negligible in the presence of 100 mM azide ion, whereas the photocytotoxicity induced by these porphyrins increased in D2O. In contrast, the addition of 100 mM mannitol produced a negligible effect on the cellular phototoxicity. On the other hand, in vitro direct observation of singlet molecular oxygen, O2(1Δg) phosphorescence at 1270 nm was analyzed using C. albicans in D2O. A shorter lifetime of O2(1Δg) was found in yeast cellular suspensions. These cationic porphyrins bind strongly to C. albicans cells and the O2(1Δg) generated inside the cells is rapidly quenched by the biomolecules of the cellular microenvironment. Therefore, the results indicate that these cationic porphyrins appear to act as photosensitizers mainly via the intermediacy of O2(1Δg).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. P. Brion, S. E. Uko and D. L. Goldman, Risk of resistance associated with fluconazole prophylaxis: systematic review, J. Infect., 2007, 54, 521–529.

    Article  Google Scholar 

  2. M. A. Ribeiro and C. P. Rodrigues, Up-regulation of ERG11 gene among fluconazole-resistant Candida albicans generated in vitro: is there any clinical implication?, Diagn. Microbiol. Infect. Dis., 2007, 57, 71–75.

    Article  CAS  Google Scholar 

  3. T. Dai, Y.-Y. Huang and M. R. Hamblin, Photodynamic therapy for localized infections-State of the art, Photodiagn. Photodyn. Ther., 2009, 6, 170–188.

    Article  CAS  Google Scholar 

  4. G. Jori and S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  Google Scholar 

  5. E. N. Durantini, Photodynamic inactivation of bacteria, Curr. Bioact. Compd., 2006, 2, 127–142.

    Article  CAS  Google Scholar 

  6. M. Ochsner, Photophysical and photobiological processes in photo-dynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  7. M. C. DeRosa and R. J. Crutchley, Photosensitized singlet oxygen and its applications, Coord. Chem. Rev., 2002, 233–234, 351-371.

    Google Scholar 

  8. G. Jori, L. Schindl, A. Schindl and L. Polo, Novel approaches towards a detailed control of the mechanism and efficiency of photosensitized process in vivo, J. Photochem. Photobiol., A, 1996, 102, 101–107.

    Article  CAS  Google Scholar 

  9. T. M. A. R. Dubbelman and J. Steveninck, Photodynamically induced damage to cellular functions and its relation to cell death, J. Photochem. Photobiol., B, 1990, 6, 345–347.

    Article  Google Scholar 

  10. S. A. G. Lambrechts, M. C. G. Aalders and J. Van Marle, Mechanistic study of the photodynamic inactivation of Candida albicans by a cationic porphyrin, Antimicrob. Agents Chemother., 2005, 49, 2026–2034.

    Article  CAS  Google Scholar 

  11. S. A. G. Lambrechts, M. C. G. Aalders, F. D. Verbraak, J. W. M. Lagerberg, J. B. Dankert and J. J. Schuitmaker, Effect of albumin on the photodynamic inactivation of microorganisms by a cationic porphyrin, J. Photochem. Photobiol., B, 2005, 79, 51–57.

    Article  CAS  Google Scholar 

  12. M. P. Cormick, M. G. Alvarez, M. Rovera and E. N. Durantini, Photodynamic inactivation of Candida albicans sensitized by tri- and tetra-cationic porphyrin derivatives, Eur. J. Med. Chem., 2009, 44, 1592–1599.

    Article  CAS  Google Scholar 

  13. E. D. Quiroga, M. G. Alvarez and E. N. Durantini, Susceptibility of Candida albicans to photodynamic action of 5,10,15,20-tetra(4-N-methylpyridyl)porphyrin in different media, FEMS Immunology & Medical Microbiology, 2010, 60, 123–131.

    Article  CAS  Google Scholar 

  14. D. Lazzeri and E. N. Durantini, Synthesis of meso-substituted cationic porphyrins as potential photodynamic agents, ARKIVOC, 2003, 10, 227–239.

    Article  Google Scholar 

  15. M. Merchat, G. Spikes, G. Bertoloni and G. Jori, Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins, J. Photochem. Photobiol., B, 1996, 35, 149–157.

    Article  CAS  Google Scholar 

  16. M. E. Milanesio, M. G. Alvarez, S. G. Bertolotti and E. N. Durantini, Photophysical characterization and photodynamic activity of metallo 5-(4-(trimethylammonium)phenyl)-10,15,20-tris(2,4,6-trimethoxyphenyl)porphyrin in homogeneous and biomimetic media, Photochem. Photobiol. Sci., 2008, 7, 963–972.

    Article  CAS  Google Scholar 

  17. F. Wilkinson, W. P. Helman and A. B. Ross, Rate constants for the decay and reactions of the lowest electronically excited singlet state of molecular oxygen in solution. An expanded and revised compilation, J. Phys. Chem. Ref. Data, 1995, 24, 663–1021.

    Article  CAS  Google Scholar 

  18. T. Maisch, C. Bosl, R.-M. Szeimies, N. Lehn and C. Abels, Photody-namic effects of novel XF porphyrin derivatives on prokaryotic and eukaryotic cells, Antimicrob. Agents Chemother., 2005, 49, 1542–1552.

    Article  CAS  Google Scholar 

  19. A. Baker and J. R. Kanofsky, Direct observation of singlet oxygen phosphorescence at 1270 nm from L1210 leukemia cells exposed to polyporphyrin and light, Arch. Biochem. Biophys., 1991, 286, 70–75.

    Article  CAS  Google Scholar 

  20. S. Oelckers, M. Sczepan, T. Hanke and B. Röder, Time-Resolved detection of singlet oxygen luminescence in red cell ghost suspensions, J. Photochem. Photobiol., B, 1997, 39, 219–223.

    Article  CAS  Google Scholar 

  21. M. B. Spesia, D. Lazzeri, L. Pascual, M. Rovera and E. N. Durantini, Photoinactivation of Escherichia coli using porphyrin derivatives with different number of cationic charges, FEMS Immunol. Med. Microbiol., 2005, 44, 289–295.

    Article  CAS  Google Scholar 

  22. D. Lazzeri, M. Rovera, L. Pascual and E. N. Durantini, Photody-namic studies and photoinactivation of Escherichia coli using meso-substituted cationic derivatives with asymmetric charge distribution, Photochem. Photobiol., 2004, 80, 286–293.

    Article  CAS  Google Scholar 

  23. D. A. Caminos, M. B. Spesia and E. N. Durantini, Photody-namic inactivation of Escherichia coli by novel meso-substituted porphyrins by 4-(3-N,N,N-trimethylammoniumpropoxy)phenyl and 4-(trifluoromethyl)phenyl groups, Photochem. Photobiol. Sci., 2006, 5, 56–65.

    Article  CAS  Google Scholar 

  24. D. A. Caminos and E. N. Durantini, Interaction and photodynamic activity of cationic porphyrin derivatives bearing different pattern of charge distribution with GMP and DNA, J. Photochem. Photobiol., A, 2008, 198, 274–281.

    Article  CAS  Google Scholar 

  25. M. A. Rubio, D. O. Mártire, S. E. Braslavsky and E. A. Lissi, Influence of the ionic strength on O21Δg) quenching by azide, J. Photochem. Photobiol., A, 1992, 66, 153–157.

    Article  CAS  Google Scholar 

  26. K. Ergaieg, M. Chevanne, J. Cillard and R. Seux, Involvement of both type I and type II mechanisms in Gram-positive and Gram-negative bacteria photosensitization by a meso-substituted cationic porphyrin, Sol. Energy, 2008, 82, 1107–1117.

    Article  CAS  Google Scholar 

  27. S. Goldstein and G. Czapski, Mannitol as an OHη scavenger in aqueous solution and in biological systems, Int. J. Radiat. Biol., 1984, 46, 725–729.

    CAS  Google Scholar 

  28. L.-O. Klotz, K.-D. Kröncke and H. Sies, Singlet oxygen-induced signaling effects in mammalian cells, Photochem. Photobiol. Sci., 2003, 2, 88–94.

    Article  CAS  Google Scholar 

  29. S. Oelckers, M. Sczepan, T. Hanke and B. Röder, Time-Resolved detection of singlet oxygen luminescence in red-cell ghost suspensions: concerning a signal component that can be attributed to 1O2 luminescence from the inside of a native membrane, J. Photochem. Photobiol., B, 1999, 53, 121–127.

    Article  CAS  Google Scholar 

  30. J. R. Kanofsky, Quenching of singlet oxygen by human red cell ghosts, Photochem. Photobiol., 1991, 53, 93–99.

    Article  CAS  Google Scholar 

  31. S. Hackbarth, J. Schlothauer, A. Preuβ and B. Röder, New insights to primary photodynamic effects - Singlet oxygen kinetics in living cells, J. Photochem. Photobiol., B, 2010, 98, 173–179.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgardo N. Durantini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cormick, M.P., Quiroga, E.D., Bertolotti, S.G. et al. Mechanistic insight of the photodynamic effect induced by tri- and tetra-cationic porphyrins on Candida albicans cells. Photochem Photobiol Sci 10, 1556–1561 (2011). https://doi.org/10.1039/c1pp05074e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05074e

Navigation