Skip to main content
Log in

Rufloxacin-induced photosensitization in yeast

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

The fluoroquinolone Rufloxacin (RFX) is active as specific inhibitor of bacterial gyrase. The adverse effects of the photosensitization induced by fluoroquinolones are well known. A predominant type II photosensitizing activity of Rufloxacin has already been demonstrated on simpler models (free nucleosides, calf thymus DNA), whereas a cooperative mechanism was corroborated on more complex ones (plasmid and fibroblast). The purpose of this study is to examine the drug photocytoxicity in another complex cellular model, a wild-type eukaryotic fast-growing microorganism whose cultivation is cheap and easily managed, Saccharomyces cerevisiae. This work represents the first report of the potential photogenotoxicity of Rufloxacin. Particular emphasis was given to DNA modifications caused in yeast by the formation of Rufloxacin photomediated toxic species, such as hydrogen peroxide and formaldehyde. Drug phototoxicity on yeast was evaluated by measuring DNA fragmentation (single/double strand breaks) using single cell gel electrophoresis assay and 8-OH-dGuo, a DNA photooxidation biomarker, by HPLC-ECD. Cellular sensitivity was also assessed by cell viability test. The extra- and intracellular RFX concentration (as well as its main photoproduct) was verified by HPLC-MS, whereas the cytotoxic species were evaluated by colorimetric assays. The results confirm the phototoxicity of Rufloxacin on yeast cell and are in agreement with those previously obtained with human fibroblast and with simpler models used recently, and provide a clear link between DNA photosensitization and overall phototoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Melhus, Fluoroquinolones and tendon disorders, Expert Opin. Drug Safety, 2005, 4, 299–309.

    Article  CAS  Google Scholar 

  2. V. Aleixandre, G. Herrera, A. Urios, M. Blanco, Effects of ciprofloxacin on plasmid DNA supercoiling of Escherichia coli topoisomerase I and gyrase mutants, Antimicrob. Agents Chemother., 1991, 35, 20–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. Ferguson, Fluoroquinolone photosensitization: a review of clinical and laboratory studies, Photochem. Photobiol., 1995, 62, 954–958.

    Article  CAS  Google Scholar 

  4. D. Gendrel, M. Chalumeau, F. Moulin, J. Raymond, Fluoroquinolones in paediatrics: a risk for the patient or for the community?, Lancet Infect. Dis., 2003, 3, 537–546.

    Article  CAS  PubMed  Google Scholar 

  5. S. Sauviago, T. Douki, F. Odin, S. Caillat, J. L. Ravanat, J. Cadet, Analysis of fluoroquinolone-mediated photosensitization of 2′-deoxyguanosine, calf thymus and cellular DNA: Determination of Type-I, Type-II and Triplet–triplet energy transfer mechanism contribution, Photochem. Photobiol., 2001, 73, 230–237.

    Article  Google Scholar 

  6. A. Belvedere, F. Bosca, A. Catalfo, M. C. Cuquerella, G. De Guidi, M. A. Miranda, Type II Guanine Oxidation Photoinduced by the Antibacterial Fluoroquinolone Rufloxacin in Isolated DNA and in 2′-Deoxyguanosine, Chem. Res. Toxicol., 2002, 15, 1142–1149.

    Article  CAS  PubMed  Google Scholar 

  7. M. C. Cuquerella, F. Bosca, M. A. Miranda, A. Belvedere, A. Catalfo, G. De Guidi, Photochemical Properties of Ofloxacin Involved in Oxidative DNA Damage: A Comparison with Rufloxacin, Chem. Res. Toxicol., 2003, 16, 562–570.

    Article  CAS  PubMed  Google Scholar 

  8. L. Marrot, C. Agapakis-Causse, Differences in the photogenotoxic potential of two fluoroquinolones as shown in diploid yeast strain (Saccharomyces cerevisiae) and supercoiled plasmid DNA, Mutat. Res., 2000, 468, 1–9.

    Article  CAS  PubMed  Google Scholar 

  9. L. Marrot, J. P. Belaidi, C. Chaubo, J. R. Meunier, P. Perez, C. Agapakis-Causse, Fluoroquinolones as chemical tools to define a strategy for photogenotoxicity in vitro assessment, Toxicol. In Vitro, 2001, 15, 131–142.

    Article  CAS  PubMed  Google Scholar 

  10. J. M. C. Gutteridge, Lipid peroxidation and antioxidants as biomarkers of tissue damage, Clin. Chem., 1995, 41, 1819–1828.

    Article  CAS  PubMed  Google Scholar 

  11. T. E. Spratt, S. S. Schultz, D. E. Levy, D. Chen, G. Schlüter, G. M. Williams, Different mechanisms for the photoinduced production of oxidative DNA damage by fluoroquinolones differing in photostability, Chem. Res. Toxicol., 1999, 12, 809–815.

    Article  CAS  PubMed  Google Scholar 

  12. J. E. Rosen, A. K. Prahalad, D. Chen, G. M. Williams, Quinolone antibiotic photodynamic production of 8-oxo-7,8-dihydro-2′-deoxyguanosine in cultured liver epithelial cells, Photochem. Photobiol., 1997, 65, 990–996.

    Article  CAS  PubMed  Google Scholar 

  13. J. E. Rosen, D. Chen, A. K. Prahalad, T. E. Spratt, G. Schlüter, G. M. Williams, A fluoroquinolone antibiotic with a methoxy group at the 8-position yields reduced generation of 8-oxo-7,8-dihydro-2′-deoxyguanosine after UVA irradiation, Toxicol. Appl. Pharmacol., 1997, 145, 381–387.

    Article  CAS  PubMed  Google Scholar 

  14. L. K. Verna, D. Chen, G. Schlüter, G. M. Williams, Inhibition by singlet oxygen quenchers of oxidative damage to DNA produced in cultured cells by exposure to a quinolone antibiotic and ultraviolet A irradiation, Cell Biol. Toxicol., 1997, 14, 237–242.

    Article  Google Scholar 

  15. G. Condorelli, G. De Guidi, S. Giuffrida, S. Sortino, R. Chillemi, S. Sciuto, Molecular mechanism of photosensitization induced by drugs. XII. Photochemistry, and photosensitization of Rufloxacin: an unusual photodegradation path for the antibacterials containing a fluoroquinolones like chromophores, Photochem. Photobiol., 1999, 70, 280–286.

    Article  CAS  PubMed  Google Scholar 

  16. G. Ouedraogo, P. Morliere, C. Maziere, J. C. Maziere, R. Santus, Alteration of the endocytotic pathway by photosensitization with fluoroquinolones, Photochem. Photobiol., 2000, 72, 458–463.

    Article  CAS  PubMed  Google Scholar 

  17. A. Kawada, K. Hatanaka, H. Gomi, I. Matsuo, In vitro phototoxicity of new quinolones: production of active oxygen species and photosensitized lipid peroxidation, Photodermatol. Photoimmunol. Photomed., 1999, 15, 226–230.

    Article  CAS  PubMed  Google Scholar 

  18. G. Ouedraogo, P. Morliere, M. Bazin, R. Santus, B. Kratzer, M. A. Miranda, J. V. Castell, Lysosomes are sites of fluoroquinolone photosensitization in human skin fibroblasts: a microspectrofluorometric approach, Photochem. Photobiol., 1999, 70, 123–129.

    CAS  PubMed  Google Scholar 

  19. A. Blotz, L. Michel, A. Moysan, J. Blumel, L. Dubertret, H. J. Ahr, H. W. Vohr, Analyses of cutaneous fluoroquinolones photoreactivity using the integrated model for the differentiation of skin reactions, J. Photochem. Photobiol., B, 2000, 58, 46–53.

    Article  CAS  Google Scholar 

  20. K. Shimoda, T. Ikeda, S. Okawara, M. Kato, Possible relationship between phototoxicity and photodegradation of sitafloxacin, a quinolone antibacterial agent, in the auricular skin of albino mice, Toxicol. Sci., 2000, 56, 290–296.

    Article  CAS  PubMed  Google Scholar 

  21. N. J. Traynor, M. D. Barratt, W. W. Lovell, J. Ferguson, N. K. Gibbs, Comparison of an in vitro cellular phototoxicity model against controlled clinical trials of fluoroquinolone skin phototoxicity, Toxicol. In Vitro, 2000, 14, 275–283.

    Article  CAS  PubMed  Google Scholar 

  22. A. Ohshima, N. Seo, M. Takigawa, Y. Tokura, Formation of antigenic quinolone photoadducts on Langerhans cells initiates photoallergy to systemically administered quinolone in mice, J. Invest. Dermatol., 2000, 114, 569–575.

    Article  CAS  PubMed  Google Scholar 

  23. S. Itoh, M. Katoh, K. Furuhama, In vivo photochemical micronucleus induction due to certain quinolone antimicrobial agents in the skin of hairless mice, Mutat. Res., 2002, 520, 133–139.

    Article  CAS  PubMed  Google Scholar 

  24. K. Shimoda, S. Okawara, M. Kato, Phototoxic retinal degeneration and toxicokinetics of sitafloxacin, a quinolone antibacterial agent, in mice, Arch. Toxicol., 2001, 75, 395–399.

    Article  CAS  PubMed  Google Scholar 

  25. Y. W. Sun, E. P. Heo, Y. H. Cho, K. M. Bark, T. J. Yoon, T. H. Kim, Pefloxacin and ciprofloxacin increase UVA-induced edema and immune suppression, Photodermatol. Photoimmunol. Photomed., 2001, 17, 172–177.

    Article  CAS  PubMed  Google Scholar 

  26. A. Izzotti, C. Cartiglia, M. Taningher, S. De Flora, R. Balansky, Age-related increases of 8-hydroxy-2′-deoxyguanosine and DNA-protein crosslinks in mouse organs, Mutat. Res., 1999, 446, 215–223.

    Article  CAS  PubMed  Google Scholar 

  27. E. Eriksson, A. Forsgren, K. Riesbeck, Several gene programs are induced in ciprofloxacin-treated human lymphocytes as revealed by microarray analysis, J. Leukoc. Biol., 2003, 74, 456–463.

    Article  CAS  PubMed  Google Scholar 

  28. S. Y. Brendler-Schwaab, E. von Kautz, G. Schlüter, B. A. Herbold, A new approch to screen for photomutagenicity with the HPRT assay, Toxicologist, 1995, 14, 323.

    Google Scholar 

  29. B. E. Johnson, N. K. Gibbs, J. Ferguson, Quinolone antibiotic with potential to photosensitize skin tumorigenesis, J. Photochem. Photobiol., B, 1997, 37, 171–173.

    Article  CAS  Google Scholar 

  30. G. Klecak, F. Urbach, H. Urwyler, Fluoroquinolone antibacterials enhance UVA induced skin tumours, J. Photochem. Photobiol., B, 1997, 37, 174–181.

    Article  CAS  Google Scholar 

  31. S. Kidd, J. R. Meunier, N. J. Traynor, L. Marrot, C. Agapakis-Causse, N. K. Gibbs, The phototumorigenic fluoroquinolone, lomefloxacin, photosensitises p53 accumulation and transcriptional activity in human skin cells, J. Photochem. Photobiol., B, 2000, 58, 26–31.

    Article  CAS  Google Scholar 

  32. M. Makinen, P. D. Forbes, F. Stenback, Quinolone antibacterials: a new class of photochemical carcinogens, J. Photochem. Photobiol., B, 1997, 37, 182–187.

    Article  CAS  Google Scholar 

  33. B. N. Ames, L. S. Gold, W. C. Willett, The causes and prevention of cancer, Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 5258–5265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. L. J. Martinez, R. H. Sik, C. F. Chignell, Fluoroquinolone antimicrobials: singlet oxygen, superoxide and phototoxicity, Photochem. Photobiol., 1998, 67, 399–403.

    Article  CAS  PubMed  Google Scholar 

  35. P. Bilski, L. J. Martinez, E. B. Koker, C. F. Chignell, Influence of solvent polarity and proticity on the photochemical proprieties of norfloxacin, Photochem. Photobiol., 1998, 68, 20–24.

    Article  CAS  PubMed  Google Scholar 

  36. A. Albini, S. Monti, Photophysics and photochemistry of fluoroquinolones, Chem. Soc. Rev., 2003, 32, 238–250.

    Article  CAS  PubMed  Google Scholar 

  37. J. Sunderland, C. M. Tobin, A. J. Hedges, A. P. MacGowan, L. O. White, Antimicrobial activity of fluoroquinolone photodegradation products determined by parallel-line bioassay and high performance liquid chromatography, J. Antimicrob. Chemother., 2001, 47, 271–275.

    Article  CAS  PubMed  Google Scholar 

  38. S. Kawanishi, Y. Hiraku, Sequence-specific DNA damage induced by UVA radiation in the presence of endogenous and exogenous photosensitizers, Curr. Probl. Dermatol., 2001, 29, 74–82.

    Article  CAS  PubMed  Google Scholar 

  39. L. Marrot, J. P. Belaidi, C. Jones, P. Perez, L. Riou, A. Sarasin, J. R. Meunier, Molecular responses to photogenotoxic stress induced by the antibiotic lomefloxacin in human skin cells: from DNA damage to apoptosis, J. Invest. Dermatol., 2003, 121, 596–606.

    Article  CAS  PubMed  Google Scholar 

  40. A. A. Chetelat, S. Alberin, E. Gocke, The photomutagenicity of fluoroquinolones in tests for gene mutation, chromosomal aberration, gene conversion and DNA breakage (Comet assay), Mutagenesis, 1996, 11, 497–504.

    Article  CAS  PubMed  Google Scholar 

  41. O. Östling, K. J. Johanson, Micrelectrophoretic study of radiation-induced DNA damages in individual mammalian cells, Biochem. Biophys. Res. Commun., 1984, 123, 291–298.

    Article  PubMed  Google Scholar 

  42. S. Nocentini, Comet assay analysis of repair of DNA strand breaks in normal and deficient human cells exposed to radiations and chemicals. Evidence for a repair pathway specificity of DNA ligation, Radiat. Res., 1995, 144, 170–180.

    Article  CAS  PubMed  Google Scholar 

  43. K. L. Witt, E. Zeiger, R. R. Tice, A. P. van Birgelen, The genetic toxicity of 3,3′,4,4′-tetrachloroazobenzene and 3,3′,4, 4′-tetrachloroazoxybenzene: discordance between acute mouse bone marrow and subchronic mouse peripheral blood micronucleus test results, Mutat. Res., 2000, 472, 147–154.

    Article  CAS  PubMed  Google Scholar 

  44. C. Scifo, V. Cardile, A. Russo, R. Consoli, C. Vancheri, F. Capasso, A. Vanella, M. Renis, Resveratrol and propolis as necrosis or apoptosis inducers in human prostate carcinoma cells, Oncol. Res., 2004, 14, 415–426.

    Article  PubMed  Google Scholar 

  45. G. Miloshev, I. Mihaylov, B. Anachkova, Application of the single cell gel electrophoresis on yeast cells, Mutat. Res., 2002, 513, 69–74.

    Article  CAS  PubMed  Google Scholar 

  46. N. P. Singh, R. R. Tice, R. E. Stephens, E. L. Scheneider, A microgel elctrophoresis technique for the direct quantitation of DNA damage and repair in individual fibroblasts cultured on microscope slides, Mutat. Res., 1991, 252, 289–296.

    Article  CAS  PubMed  Google Scholar 

  47. M. Wojewodzka, I. Buraczewska, M. Kruszewski, A modified neutral comet assay: elimination of lysis at high temperature and validation of the assay with anti-single-stranded DNA antibody, Mutat. Res., 2002, 518, 9–20.

    Article  CAS  PubMed  Google Scholar 

  48. A. Catalfo, C. Scifo, S. Stella, A. Belvedere, M. Renis, G. De Guidi, Rufloxacin induced photosensitization in bio-models of increasing complexity, Photochem. Photobiol. Sci., 2005, 4, 304–314.

    Article  CAS  PubMed  Google Scholar 

  49. A. Belvedere, F. Bosca, M. C. Cuquerella, G. De Guidi, M. A. Miranda, Photoinduced N-demethylation of rufloxacin and its methyl ester under aerobic conditions, Photochem. Photobiol., 2002, 76, 252–258.

    Article  CAS  PubMed  Google Scholar 

  50. R. Fahrig, B. Fahrig, Adaptive resistance of Saccharomyces cerevisiae to chronic treatment with genotoxic and nongenotoxic carcinogens, J. Environ. Pathol. Toxicol. Oncol., 1999, 18, 103–108.

    CAS  PubMed  Google Scholar 

  51. C. E. Outten, R. L. Falk, V. C. Culotta, Cellular factors required for protection from hyperoxia toxicity in Saccharomyces cerevisiae, Biochem. J., 2005, 388, 93–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. C. Helma, M. Uhl, A public domain image-analysis program for single-cell gel-electrophoresis (comet) assay, Mutat. Res., 2000, 466, 9–15.

    CAS  PubMed  Google Scholar 

  53. S. Grasso, C. Scifo, V. Cardile, R. Gulino, M. Renis, Adaptive responses to the stress induced by hyperthermia or hydrogen peroxide in human fibroblasts, Exp. Biol. Med., 2003, 228, 491–498.

    Article  CAS  Google Scholar 

  54. T. Douki, D. Perdiz, P. Gróf, Z. Kuluncsics, E. Moustacchi, J. Cadet, E. Sage, Oxidation of Guanine in Cellular DNA by Solar UV Radiation: Biological Role, Photochem. Photobiol., 1999, 70, 184–190.

    Article  CAS  PubMed  Google Scholar 

  55. J. C. Ku, OSHA method no. ID-205, Evaluation of 3M Formaldehyde Monitors (Model 3721), USDOL/OSHA-SLTC Product Evaluation No. 10, Occupational Safety and Health Administration Technical Center, Salt Lake City, 1989.

    Google Scholar 

  56. M. K. Shigenaga, B. N. Ames, Assays for 8-hydroxy-2′-deoxyguanosine: a biomarker of in vivo oxidative DNA damage, Free Radical Biol. Med., 1991, 10, 211–216.

    Article  CAS  Google Scholar 

  57. N. Paillous, P. Vicendo, Mechanisms of photosensitized DNA cleavage, J. Photochem. Photobiol., B, 1993, 20, 203.

    Article  CAS  Google Scholar 

  58. J. L. Ravanat, J. Cadet, Reaction of singlet oxygen with 2′-deoxyguanosine and DNA. Isolation, and characterization of the main oxidation products, Chem. Res. Toxicol., 1995, 8, 379–388.

    Article  CAS  PubMed  Google Scholar 

  59. C. M. Gedik, Andrew Collins, Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study, FASEB J., 2005, 19, 82–84.

    Article  CAS  PubMed  Google Scholar 

  60. S. Kozmin, G. Slezak, A. Reynaud-Angelin, C. Elie, Y. de Rycke, S. Boiteux, E. Sage, UVA radiation is highly mutagenic in cells that are unable to repair 7,8-dihydro-8-oxoguanine in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U. S. A., 2005, 102, 13538–13543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. W. Luo, J. G. Muller, E. M. Rachlin, C. J. Burrows, Characterization of Hydantoin Products from One-Electron Oxidation of 8-Oxo-7,8-dihydroguanosine in a Nucleoside Model, Chem. Res. Toxicol., 2001, 14, 927–938.

    Article  CAS  PubMed  Google Scholar 

  62. C. J. Burrows, J. G. Muller, O. Kornyushnya, W. Luo, V. Duarte, M. D. Leipold, S. S. David, Structure and Potential Mutagenicity of New Hydantoin Products from Guanosine and 8-Oxo-7,8-Dihydroguanine Oxidation by Transition Metals, Environ. Health Perspect., 2002, 110, 713–717.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. P. Møller, Assessment of reference values for DNA damage detected by the comet assay in human blood cell DNA, Mutat. Res., 2006, 612, 84–104.

    Article  PubMed  CAS  Google Scholar 

  64. Z. Feng, W. Hu, S. Amin, M. Tang, Mutational spectrum and genotoxicity of the major lipid peroxidation product, trans-4-hydroxy-2-nonenal, induced DNA adducts in nucleotide excision repair-proficient and deficient human cells, Biochemistry, 2003, 42, 7848–7854.

    Article  CAS  PubMed  Google Scholar 

  65. D. Averbeck, S. Averbeck, L. Dubertret, A. R. Young, P. Morliere, Genotoxicity of bergapten and bergamot oil in Saccharomyces cerevisiae, J. Photochem. Photobiol., B, 1990, 7, 209–229.

    Article  CAS  Google Scholar 

  66. L. Marrot, A. Labarussiat, P. Perez, J. R. Meunier, Use of the yeast Saccharomyces cerevisiae as a pre-screening approach for assessment of chemical-induced phototoxicity, Toxicol. In Vitro, 2006, 20, 1040–1050.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido De Guidi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalfo, A., Calandra, M.L., Renis, M. et al. Rufloxacin-induced photosensitization in yeast. Photochem Photobiol Sci 6, 181–189 (2007). https://doi.org/10.1039/b608238f

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b608238f

Navigation