Skip to main content

Advertisement

Log in

Regulatory pathways in photodynamic therapy induced apoptosis

  • Perspective
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy is an approved treatment for several types of tumors and certain benign diseases, based on the use of a light-absorbing compound (photosensitizer) and light irradiation. In the presence of molecular oxygen, light-activation of the photosensitizer, which accumulates in cancer tissues, leads to the local production of reactive oxygen species that kill the tumor cells. Mitochondria are central coordinators of the mechanisms by which PDT induces apoptosis in the target cells. Recent studies indicate that concomitant to the permeabilization of the outer mitochondrial membrane (which leads to the release of several apoptogenic factors in the cytosol and to the activation of effector caspases), regulatory signaling pathways are activated in a photosensitizer, PDT dose and cell-dependent fashion. Signaling pathways regulated by members of mitogen activated protein kinases and their downstream targets, such as cyclooxygenase-2, appear to critically modulate cancer cell sensitivity to PDT. Understanding the molecular events that contribute to PDT-induced apoptosis, and how cancer cells can evade apoptotic death, should enable a more rationale approach to drug design and therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J., Dougherty, An update on photodynamic therapy applications J. Clin. Laser Med. Surg. 2002 20 3–7

    Article  PubMed  Google Scholar 

  2. N. L. Oleinick, R. L. Morris and I., Belichenko, The role of apoptosis in response to photodynamic therapy: what, where, why, and how Photochem. Photobiol. Sci. 2002 1 1–21

    Article  CAS  PubMed  Google Scholar 

  3. S. O. Gollnick, L. Vaughan and B. W., Henderson, Generation of effective antitumor vaccines using photodynamic therapy Cancer Res. 2002 62 1604–1608

    CAS  PubMed  Google Scholar 

  4. C. A. Kendall and C. A., Morton, Photodynamic therapy for the treatment of skin disease Technol. Cancer Res. Treat. 2003 2 283–288

    Article  CAS  PubMed  Google Scholar 

  5. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q., Peng, Photodynamic therapy J. Natl. Cancer Inst. 1998 90 889–905

    Article  CAS  PubMed  Google Scholar 

  6. A. C., Moor, Signaling pathways in cell death and survival after photodynamic therapy J. Photochem. Photobiol. B 2000 57 1–13

    Article  CAS  PubMed  Google Scholar 

  7. M. O., Hengartner, The biochemistry of apoptosis Nature 2000 407 770–776

    Article  CAS  PubMed  Google Scholar 

  8. G. van Loo, X. Saelens, M. van Gurp, M. MacFarlane, S. J. Martin and P., Vandenabeele, The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet Cell Death Differ. 2002 9 1031–1042

    Article  PubMed  CAS  Google Scholar 

  9. H. Puthalakath and A., Strasser, Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins Cell Death Differ. 2002 9 505–512

    Article  CAS  PubMed  Google Scholar 

  10. C. Martinou and D. R., Green, Breaking the mitochondrial barrier Nat. Rev. Mol. Cell Biol. 2001 2 63–67

    Article  CAS  PubMed  Google Scholar 

  11. M. Karbowski and R. J., Youle, Dynamics of mitochondrial morphology in healthy cells and during apoptosis Cell Death Differ. 2003 10 870–880

    Article  CAS  PubMed  Google Scholar 

  12. Y. J. Hsieh, C. C. Wu, C. J. Chang and J. S., Yu, Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets J. Cell Physiol. 2003 194 363–375

    Article  CAS  PubMed  Google Scholar 

  13. C. Fabris, G. Valduga, G. Miotto, L. Borsetto, G. Jori, S. Garbisa and E., Reddi, Photosensitization with zinc(ii) phthalocyanine as a switch in the decision between apoptosis and necrosis Cancer Res. 2001 61 7495–7500

    CAS  PubMed  Google Scholar 

  14. D., Kessel, Relocalization of cationic porphyrins during photodynamic therapy Photochem. Photobiol. Sci. 2002 11 837–840

    Article  CAS  Google Scholar 

  15. L. Y. Xue, S. M. Chiu and N. L., Oleinick, Photodynamic therapy-induced death of MCF-7 human breast cancer cells: a role for caspase-3 in the late steps of apoptosis but not for the critical lethal event Exp. Cell Res. 2001 263 145–155

    Article  CAS  PubMed  Google Scholar 

  16. D. Grebenova, K. Kuzelova, K. Smetana, M. Pluskalova, H. Cajthamlova, I. Marinov, O. Fuchs, J. Soucek, P. Jarolim and Z., Hrkal, Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells J. Photochem. Photobiol. B 2003 69 71–85

    Article  CAS  PubMed  Google Scholar 

  17. D. J. Granville, B. A. Cassidy, D. O. Ruehlmann, J. C. Choy, C. Brenner, G. Kroemer, C. van Breemen, P. Margaron, D. W. Hunt and B. M., McManus, Mitochondrial release of apoptosis-inducing factor and cytochrome c during smooth muscle cell apoptosis Am. J. Pathol. 2001 159 305–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. B. Nagy, W. C. Yeh, T. W. Mak, S. M. Chiu and D., Separovic, FADD null mouse embryonic fibroblasts undergo apoptosis after photosensitization with the silicon phthalocyanine Pc 4 Arch. Biochem. Biophys. 2001 385 194–202

    Article  CAS  PubMed  Google Scholar 

  19. S. Zhuang, J. T. Demirs and I. E., Kochevar, Protein kinase C inhibits singlet oxygen-induced apoptosis by decreasing caspase-8 activation Oncogene 2001 20 6764–6776

    Article  CAS  PubMed  Google Scholar 

  20. C. M. Schempp, B. Simon-Haarhaus, C. C. Termeer and J. C., Simon, Hypericin photo-induced apoptosis involves the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and activation of caspase-8 FEBS Lett. 2001 493 26–30

    Article  CAS  PubMed  Google Scholar 

  21. S. M. Ali, S. K. Chee, G. Y. Yuen and M., Olivo, Hypericin induced death receptor-mediated apoptosis in photoactivated tumor cells Int. J. Mol. Med. 2002 9 601–616

    CAS  PubMed  Google Scholar 

  22. B. Chen, T. Roskams, Y. Xu, P. Agostinis and P. A. de Witte Photodynamic therapy with hypericin induces vascular damage and apoptosis in the RIF-1 mouse tumor model Int. J. Cancer 2002 98 284–290

    Article  CAS  PubMed  Google Scholar 

  23. D. Kessel, M. Antolovich and K. M., Smith, The role of the peripheral benzodiazepine receptor in the apoptotic response to photodynamic therapy Photochem. Photobiol. 2001 74 346–349

    Article  CAS  PubMed  Google Scholar 

  24. T. J. Dougherty, A. B. Sumlin, W. R. Greco, K. R. Weishaupt, L. A. Vaughan and R. K., Pandey, The role of the peripheral benzodiazepine receptor in photodynamic activity of certain pyropheophorbide ether photosensitizers: albumin site II as a surrogate marker for activity Photochem. Photobiol. 2002 76 91–97

    Article  CAS  PubMed  Google Scholar 

  25. A. S. Belzacq, E. Jacotot, H. L. Vieira, D. Mistro, D. J. Granville, Z. Xie, J. C. Reed, G. Kroemer and C., Brenner, Apoptosis induction by the photosensitizer verteporfin: identification of mitochondrial adenine nucleotide translocator as a critical target Cancer Res. 2001 61 1260–1264

    CAS  PubMed  Google Scholar 

  26. M. Lam, N. L. Oleinick and A. L., Nieminen, Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells. Reactive oxygen species and mitochondrial inner membrane permeabilization J. Biol. Chem. 2001 276 47379–47386

    Article  CAS  PubMed  Google Scholar 

  27. C. Salet, G. Moreno, F. Ricchelli and P., Bernardi, Singlet oxygen produced by photodynamic action causes inactivation of the mitochondrial permeability transition pore J. Biol. Chem. 1997 272 21938–21943

    Article  CAS  PubMed  Google Scholar 

  28. S. M. Chiu and N. L., Oleinick, Dissociation of mitochondrial depolarization from cytochrome c release during apoptosis induced by photodynamic therapy Br. J. Cancer 2001 84 1099–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. A. Vantieghem, Y. Xu, W. Declercq, P. Vandenabeele, G. Denecker, J. R. Vandenheede W. Merlevede, P. A. de Witte and P., Agostinis, Different pathways mediate cytochrome c release after photodynamic therapy with hypericin Photochem. Photobiol. 2001 74 133–142

    Article  CAS  PubMed  Google Scholar 

  30. S. M. Chiu, L. Y. Xue, J. Usuda, K. Azizuddin and N. L., Oleinick, Bax is essential for mitochondrion-mediated apoptosis but not for cell death caused by photodynamic therapy Br. J. Cancer 2003 89 1590–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. M. C. Wei, W. X. Zong, E. H. Cheng, T. Lindstein, V. Panoutsakopoulou, A. J. Ross, K. A. Roth, G. R. MacGregor, C. B. Thompson and S. J., Korsmeyer, Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death Science 2001 292 727–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. T. Cirman, K. Oresic, G. Droga Mazovec, V. Turk, J. C. Reed, R. M. Myers, G. S. Salvesen and B., Turk, Selective disruption of lysosomes in HeLa cells triggers apoptosis, mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins J. Biol. Chem. 2004 279 3578–3587

    Article  CAS  PubMed  Google Scholar 

  33. J. J. Reiners, Jr., J. A. Caruso, P. Mathieu, B. Chelladurai, X. M. Yin and D., Kessel, Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage Cell Death Differ. 2002 9 934–944

    Article  CAS  PubMed  Google Scholar 

  34. L. Y. Xue, S. M. Chiu and N. L., Oleinick, Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4 Oncogene 2001 20 3420–3427

    Article  CAS  PubMed  Google Scholar 

  35. J. Usuda, S. M. Chiu, E. S. Murphy, M. Lam, A. L. Nieminen and N. L., Oleinick, Domain-dependent photodamage to Bcl-2. A membrane anchorage region is needed to form the target of phthalocyanine photosensitization J. Biol. Chem. 2003 278 2021–2029

    Article  CAS  PubMed  Google Scholar 

  36. D. Kessel and M., Castelli, Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response Photochem. Photobiol. 2001 74 318–322

    Article  CAS  PubMed  Google Scholar 

  37. A. Vantieghem, Y. Xu, Z. Assefa, J. Piette, J. R. Vandenheede, W. Merlevede, P. A. de Witte and P., Agostinis, Phosphorylation of Bcl-2 in G2/M phase-arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis J. Biol. Chem. 2002 277 37718–37731

    Article  CAS  PubMed  Google Scholar 

  38. X. Deng, S. M. Kornblau, P. P. Ruvolo and W. S. May, Jr Regulation of Bcl2 phosphorylation and potential significance for leukemic cell chemoresistance J. Natl. Cancer Inst. Monogr. 2001 28 30–37

    Google Scholar 

  39. D. J. Granville, D. O. Ruehlmann, J. C. Choy, B. A. Cassidy, D. W. Hunt, C. van Breemen and B. M., McManus, Bcl-2 increases emptying of endoplasmic reticulum Ca2+ stores during photodynamic therapy-induced apoptosis Cell Calcium 2001 30 343–350

    Article  CAS  PubMed  Google Scholar 

  40. J. Piette, C. Volanti, A. Vantieghem, J. Y. Matroule, Y. Habraken and P., Agostinis, Cell death and growth arrest in response to photodynamic therapy with membrane-bound photosensitizers Biochem. Pharmacol. 2003 66 1651–1659

    Article  CAS  PubMed  Google Scholar 

  41. J. Y. Matroule, C. M. Carthy, D. J. Granville, O. Jolois, D. W. Hunt and J., Piette, Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-a methylester photosensitization Oncogene 2001 20 4070–4084

    Article  CAS  PubMed  Google Scholar 

  42. G. L. Johnson and R., Lapadat, Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases Science 2002 298 1911–1912

    Article  CAS  PubMed  Google Scholar 

  43. Z. Assefa, A. Vantieghem, W. Declercq, P. Vandenabeele, J. R. Vandenheede, W. Merlevede, P. de Witte and P., Agostinis, The activation of the c-Jun N-terminal kinase and p38 mitogen-activated protein kinase signaling pathways protects HeLa cells from apoptosis following photodynamic therapy with hypericin J. Biol. Chem. 1999 274 8788–8796

    Article  CAS  PubMed  Google Scholar 

  44. L. O. Klotz, C. Fritsch, K. Briviba, N. Tsacmacidis, F. Schliess and H., Sies, Activation of JNK and p38 but not ERK MAP kinases in human skin cells by 5-aminolevulinate-photodynamic therapy Cancer Res. 1998 58 4297–4300

    CAS  PubMed  Google Scholar 

  45. H. P. Wang, J. G. Hanlon, A. J. Rainbow, M. Espiritu and G., Singh, Up-regulation of Hsp27 plays a role in the resistance of human colon carcinoma HT29 cells to photooxidative stress Photochem. Photobiol. 2002 76 98–104

    Article  CAS  PubMed  Google Scholar 

  46. Z. Tong, G. Singh and A. J., Rainbow, Sustained activation of the extracellular signal-regulated kinase pathway protects cells from photofrin-mediated photodynamic therapy Cancer Res. 2002 62 5528–5535

    CAS  PubMed  Google Scholar 

  47. N. Ahmad, K. Kalka and H., Mukhtar, In vitro and in vivo inhibition of epidermal growth factor receptor-tyrosine kinase pathway by photodynamic therapy Oncogene 2001 20 2314–2317

    Article  CAS  PubMed  Google Scholar 

  48. C. J. Dimitroff, W. Klohs, A. Sharma, P. Pera, D. Driscoll, J. Veith, R. Steinkampf, M. Schroeder, S. Klutchko, A. Sumlin, B. Henderson, T. J. Dougherty and R. J., Bernacki, Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy Invest. New Drugs 1999 17 121–135

    Article  CAS  PubMed  Google Scholar 

  49. W. L. Smith, D. L. DeWitt and R. M., Garavito, Cyclooxygenases: structural, cellular, and molecular biology Annu. Rev. Biochem. 2000 69 145–182

    Article  CAS  PubMed  Google Scholar 

  50. Y. Cao and S. M., Prescott, Many actions of cyclooxygenase-2 in cellular dynamics and in cancer J. Cell Physiol. 2002 190 279–286

    Article  CAS  PubMed  Google Scholar 

  51. A. Ferrario, K. Von Tiehl, S. Wong, M. Luna and C. J., Gomer, Cyclooxygenase-2 inhibitor treatment enhances photodynamic therapy-mediated tumor response Cancer Res. 2002 62 3956–3961

    CAS  PubMed  Google Scholar 

  52. N. Hendrickx, C. Volanti, U. Moens, O. M. Seternes, P. de Witte, J. R. Vandenheede, J. Piette and P., Agostinis, Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells J. Biol. Chem. 2003 278 52231–52239

    Article  CAS  PubMed  Google Scholar 

  53. M. Makowski, T. Grzela, J. Niderla, M. LAzarczyk, P. Mroz, M. Kopee, M. Legat, K. Strusinska, K. Koziak, D. Nowis, P. Mrowka, M. Wasik, M. Jakobisiak and J., Golab, Inhibition of Cyclooxygenase-2 Indirectly Potentiates Antitumor Effects of Photodynamic Therapy in Mice Clin. Cancer Res. 2003 9 5417–5422

    CAS  PubMed  Google Scholar 

  54. E. Buytaert et al., in preparation

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agostinis, P., Breyssens, H., Buytaert, E. et al. Regulatory pathways in photodynamic therapy induced apoptosis. Photochem Photobiol Sci 3, 721–729 (2004). https://doi.org/10.1039/b315237e

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b315237e

Navigation