Issue 43, 2015

Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life

Abstract

A carbon-coated Na3V2(PO4)2F3 nanocomposite (NVPF@C) is successfully realized by a facile sol–gel method. Carbon-coated NVPF nanoparticles are dispersed inside the mesoporous carbon matrix, which can not only improve the electron/ion transfer among different nanoparticles, but also benefit the electrolyte wetting during cycling. As a result, the NVPF@C cathode demonstrates remarkable Na+ storage performance: a high reversible capacity of nearly 130 mA h g−1 over 50 cycles between 4.3 and 2.0 V; superior rate capability with specific capacities of nearly 74 and 57 mA h g−1 at high current densities of 15C (1.92 A g−1) and 30C (3.84 A g−1), respectively; long-term cycle life with capacity retentions of 70% and 50% over 1000 and 3000 cycles at 10C and 30C rates. Thanks to the manifested high energy and power densities, the NVPF@C nanocomposite is suggested as a promising cathode material for grid energy storage.

Graphical abstract: Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life

Article information

Article type
Paper
Submitted
31 Jul 2015
Accepted
17 Sep 2015
First published
18 Sep 2015

J. Mater. Chem. A, 2015,3, 21478-21485

Carbon-coated Na3V2(PO4)2F3 nanoparticles embedded in a mesoporous carbon matrix as a potential cathode material for sodium-ion batteries with superior rate capability and long-term cycle life

Q. Liu, D. Wang, X. Yang, N. Chen, C. Wang, X. Bie, Y. Wei, G. Chen and F. Du, J. Mater. Chem. A, 2015, 3, 21478 DOI: 10.1039/C5TA05939A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements