Issue 58, 2014

A high-capacity dual-electrolyte aluminum/air electrochemical cell

Abstract

A novel dual-electrolyte aluminum/air cell (DEAAC), consisting of an aluminum metal anode in an organic anolyte, an anion polymer exchange membrane, and an air electrode in an aqueous alkaline catholyte, has been investigated. The anion membrane separates the organic anolyte from the aqueous catholyte, while allowing hydroxide ions to pass through. The DEAAC exhibited an open circuit voltage (VOC) of 1.6 V and a short current density (JSC) of 65 mA cm−2. With kitchen aluminum foil as the fuel, the DEAAC achieved an anodic capacity of 6000 mA h cm−3 at a discharge current density of 30 mA cm−2, which is much higher than the lithium's theoretical capacity of 2060 mA h cm−3. The anodic capacity of the DEAAC increased by 30–50 folds at different discharge current densities compared with that of a traditional alkaline Al/air cell (AAC). Overall, the DEAAC is promising as an electrochemical energy storage device because it has no detrimental hydrogen generation problem and exhibits very high anodic capacity.

Graphical abstract: A high-capacity dual-electrolyte aluminum/air electrochemical cell

Supplementary files

Article information

Article type
Paper
Submitted
02 Jun 2014
Accepted
03 Jul 2014
First published
04 Jul 2014

RSC Adv., 2014,4, 30857-30863

Author version available

A high-capacity dual-electrolyte aluminum/air electrochemical cell

L. Wang, F. Liu, W. Wang, G. Yang, D. Zheng, Z. Wu and M. K. H. Leung, RSC Adv., 2014, 4, 30857 DOI: 10.1039/C4RA05222F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements