Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Cytochrome P450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses

Abstract

There is wide variability in the response of individuals to standard doses of antipsychotic drugs. It has been suggested that this may be partly explained by differences in the cytochrome P450 (CYP450) enzyme system responsible for metabolizing the drugs. We conducted a systematic review and meta-analyses to consider whether testing for CYP450 single nucleotide polymorphisms in adults starting antipsychotic treatment for schizophrenia predicts and leads to improvements in clinical outcomes. High analytic validity in terms of sensitivity and specificity was seen in studies reporting P450 testing. However, there was limited evidence of the role of CYP2D6 polymorphisms in antipsychotic efficacy, although there was an association between CYP2D6 genotype and extrapyramidal adverse effects. No studies reported on the prospective use of CYP2D6 genotyping tests in clinical practice. In conclusion, evidence of clinical validity and utility of CYP2D6 testing in patients being prescribed antipsychotics is lacking, and thus, routine pharmacogenetic testing prior to antipsychotic prescription cannot be supported at present. Further research is required to improve the evidence base and to generate data on clinical validity and clinical utility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cai WM, Chen B, Zhang WX . Frequency of CYP2D6*10 and *14 alleles and their influence on the metabolic activity of CYP2D6 in a healthy Chinese population. Clin Pharmacol Ther 2007; 81: 95–98.

    Article  CAS  PubMed  Google Scholar 

  2. Susce MT, Murray-Carmichael E, de Leon J . Codeine intoxication associated with ultrarapid CYP2D6 metabolism. N Engl J Med 2005; 352: 638.

    Google Scholar 

  3. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjà qvist F, Ingelman-Sundberg M . Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–11829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grossman I . Routine pharmacogenetic testing in clinical practice: dream or reality? Pharmacogenomics 2007; 8: 1449–1459.

    Article  CAS  PubMed  Google Scholar 

  5. Palomaki G, McClain M, Haddow J . ACCE reviews of genetic tests: BRC1, BRC2, and CFTR In: Gwinn M, Bedrosian B, Ottmann D, Khoury M (eds). Genomics and Population Health. Centers for Disease Control and Prevention Office of Genomics and Disease Prevention: Atlanta (GA), 2005, pp 27–33.

    Google Scholar 

  6. Pirmohamed M, Park BK . Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci 2001; 22: 298–305.

    Article  CAS  PubMed  Google Scholar 

  7. Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG et al. Population genetic structure of variable drug response. Nat Genet 2001; 29: 265–269.

    Article  CAS  PubMed  Google Scholar 

  8. Arranz MJ, de Leon J . Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol Psychiatry 2007; 12: 707–747.

    Article  CAS  PubMed  Google Scholar 

  9. Dahl ML . Cytochrome p450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453–470.

    Article  CAS  PubMed  Google Scholar 

  10. Scordo MG, Spina E . Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics 2002; 3: 201–218.

    Article  CAS  PubMed  Google Scholar 

  11. Patsopoulos NA, Ntzani EE, Zintzaras E, Ioannidis JPA . CYP2D6 polymorphisms and the risk of tardive dyskinesia in schizophrenia: a meta-analysis. Pharmacogenet Genomics 2005; 15: 151–158.

    Article  CAS  PubMed  Google Scholar 

  12. Thakur M, Grossman I, McCrory D, Orlando L, Steffens D, Cline K et al. Review of evidence for genetic testing for CYP450 polymorphisms in management of patients with nonpsychotic depression with selective serotonin reuptake inhibitors. Genet Med 2007; 9: 826–835.

    Article  CAS  PubMed  Google Scholar 

  13. Khan K, Ter Riet G, Glanville J, Sowdon A, Kleijnen J . Undertaking Systematic Reviews of Research on Effectiveness. CRD's Guidance for Carrying out or Commissioning Reviews. CRD Report Number 4. 2nd edn. Centre for Reviews and Dissemination, University of York: New York, (2001).

    Google Scholar 

  14. Little J, Higgins J (eds). The HuGENet HUGE Review Handbook, version 1.0 2006.

  15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG . Measuring inconsistency in meta-analysis. BMJ 2003; 327: 557–560.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bruning T, Abel J, Koch B, Lorenzen K, Harth V, Donat S et al. Real-time PCR-analysis of the cytochrome P450 1B1 codon 432-polymorphism. Arch Toxicol 1999; 73: 427–430.

    Article  CAS  PubMed  Google Scholar 

  17. Burian M, Grosch S, Tegeder I, Geisslinger G . Validation of a new fluorogenic real-time PCR assay for detection of CYP2C9 allelic variants and CYP2C9 allelic distribution in a German population. Br J Clin Pharmacol 2002; 54: 518–521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Casley WL, LeBlanc-Westwood CA . Assay for the simultaneous detection of the *1C and *1F alleles of the CYP1A2 gene by real-time polymerase chain reaction and melting curve analysis. Psychiatr Genet 2006; 16: 81–83.

    Article  PubMed  Google Scholar 

  19. Chou WH, Yan FX, Robbins-Weilert DK, Ryder TB, Liu WW, Perbost C et al. Comparison of two CYP2D6 genotyping methods and assessment of genotype-phenotype relationships. Clin Chem 2003; 49: 542–551.

    Article  CAS  PubMed  Google Scholar 

  20. Crescenti A, Mas S, Gasso P, Baiget M, Bernardo M, Lafuente A . Simultaneous genotyping of CYP2D6*3, *4, *5 and *6 polymorphisms in a Spanish population through multiplex long polymerase chain reaction and minisequencing multiplex single base extension analysis. Clin Exp Pharmacol Physiol 2007; 34: 992–997.

    Article  CAS  PubMed  Google Scholar 

  21. Dukek BA, O’Kane DJ . Comparison of Roche diagnostics AmpliChip CYP450IVD test with TM Bioscience Tag-It cytochrome P450 2D6 and 2C19 tests. Clin Chem 2006; 52 (Suppl S): A52.

    Google Scholar 

  22. Eriksson S, Berg LM, Wadelius M, Alderborn A . Cytochrome P450 genotyping by multiplexed real-time DNA sequencing with pyrosequencing technology. Assay Drug Dev Technol 2002; 1 (1 Par1): 49–59.

    Article  CAS  PubMed  Google Scholar 

  23. Fredericks S, Moreton M, MacPhee IAM, Mohamed M, Marlowe S, Jorga A et al. Genotyping cytochrome P450 3A5 using the light cycler. Ann Clin Biochem 2005; 42: 376–381.

    Article  CAS  PubMed  Google Scholar 

  24. Harth V, Bruning T, Abel J, Koch B, Berg I, Sachinidis A et al. Real-time genotyping of cytochrome P4501A1 A4889G and T6235C polymorphisms. Mol Cell Probes 2001; 15: 93–97.

    Article  CAS  PubMed  Google Scholar 

  25. Heller T, Kirchheiner J, Armstrong VW, Lathe H, Brockmoller J, Oellerich M . Assessment of Amplichip CYP450 based CYP2D6-genotyping and phenotype prediction compared to PCR-RFLP-geno-typing and phenotyping by metoprolol pharmacokinetics. Ther Drug Monit 2005; 27: 221.

    Article  Google Scholar 

  26. Heller T, Kirchheiner J, Armstrong VW, Luthe H, Tzvetkov M, Brockmoller J et al. AmpliChip CYP450 GeneChip (R): a new gene chip that allows rapid and accurate CYP2D6 genotyping. Ther Drug Monit 2006; 28: 673–677.

    Article  CAS  PubMed  Google Scholar 

  27. Hersberger M, Marti-Jaun J, Rentsch K, Hanseler E . Rapid detection of the CYP2D6*3, CYP2D6*4, and CYP2D6*6 alleles by tetra-primer PCR and of the CYP2D6*5 allele by multiplex long PCR. Clin Chem 2000; 46: 1072–1077.

    CAS  PubMed  Google Scholar 

  28. Innocenti C, Accorsi A, Cerreta V, Mantovani V, Violante FS . Fast CYP2E1 genotyping using automated fluorescent detection. Med Lav 2006; 97: 799–804.

    CAS  PubMed  Google Scholar 

  29. James HM, Coller JK, Gillis D, Bahnisch J, Sallustio BC, Somogyi AA . A new simple diagnostic for the identification of the major CYP2D6 genotypes by DNA sequencing analysis. Int J Clin Pharmacol Ther 2004; 42: 719–723.

    Article  CAS  PubMed  Google Scholar 

  30. Labuda D, Krajinovic M, Richer C, Skoll A, Sinnett H, Yotova V et al. Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem 1999; 275: 84–92.

    Article  CAS  PubMed  Google Scholar 

  31. Lee HK, Lewis LD, Tsongalis GJ, Schur BC, Jannetto PJ, Wong SH et al. Validation of a CYP2D6 genotyping panel on the NanoChip Molecular Biology Workstation. Clin Chem 2007; 53: 823–828.

    Article  CAS  PubMed  Google Scholar 

  32. Melis R, Lyon E, McMillin GA . Determination of CYP2D6, CYP2C9 and CYP2C19 genotypes with Tag-It mutation detection assays. Expert Rev Mol Diagn 2006; 6: 811–820.

    Article  CAS  PubMed  Google Scholar 

  33. Mizugaki M, Hiratsuka M, Agatsuma Y, Matsubara Y, Fujii K, Kure S et al. Rapid detection of CYP2C18 genotypes by real-time fluorescence polymerase chain reaction. J Pharm Pharmacol 2000; 52: 199–205.

    Article  CAS  PubMed  Google Scholar 

  34. Muller B, Zopf K, Bachofer J, Steimer W . Optimized strategy for rapid cytochrome P450 2D6 genotyping by real-time long PCR. Clin Chem 2003; 49: 1624–1631.

    Article  PubMed  Google Scholar 

  35. Muthiah YD, Lee WL, Teh LK, Ong CE, Salleh MZ, Ismail R . A simple multiplex PCR method for the concurrent detection of three CYP2C8 variants. Clin Chim Acta 2004; 349: 191–198.

    Article  CAS  PubMed  Google Scholar 

  36. Neville M, Selzer R, Aizenstein B, Maguire M, Hogan K, Walton R et al. Characterization of cytochrome P450 2D6 alleles using the Invader system. Biotechniques 2002; 32 (Suppl): 34–43.

    Article  Google Scholar 

  37. Nielsen KA, Hansen EL, Gille S . Genotyping of the cytochrome P450 2D6 4469 C>T polymorphism using SimpleProbes. Scand J Clin Lab Invest 2007; 67: 280–290.

    Article  CAS  PubMed  Google Scholar 

  38. Oyama T, Mitsudomi T, Kawamoto T, Ogami A, Osaki T, Kodama Y et al. Detection of CYP1A1 gene polymorphism using designed RFLP and distributions of CYP1A1 genotypes in Japanese. Int Arch Occup Environ Health 1995; 67: 253–256.

    Article  CAS  PubMed  Google Scholar 

  39. Pickering JW, McMillin GA, Gedge F, Hill HR, Lyon E . Flow cytometric assay for genotyping cytochrome P450 2C9 and 2C19: comparison with a microelectronic DNA array. Am J Pharmacogenomics 2004; 4: 199–207.

    Article  CAS  PubMed  Google Scholar 

  40. Popp J, Messner B, Steimer W . High-speed genotyping of CYP1A2*1F mutation with fluorescent hybridization probes using the LightCycler. Pharmacogenomics 2003; 4: 643–646.

    Article  CAS  PubMed  Google Scholar 

  41. Roberts R, Sullivan P, Joyce P, Kennedy MA . Rapid and comprehensive determination of cytochrome P450 CYP2D6 poor metabolizer genotypes by multiplex polymerase chain reaction. Hum Mutat 2000; 16: 77–85.

    Article  CAS  PubMed  Google Scholar 

  42. Roche Molecular Systems Inc. U.S. Food and Drug Administration. 510(k) Substantial Equivalence Determination Decision Summary for Roche AmpliChip CYP450 microarray for identifying CYP2D6 genotype (510(k) Number k042259). 2004.

  43. Roche Molecular Systems Inc. U.S. Food and Drug Administration. 510(k) Substantial Equivalence Determination Decision Summary for Roche AmpliChip CYP450 microarray for identifying CYP2C19 genotype (510(k) Number k043576). 2005.

  44. Rohrbacher M, Kirchhof A, Geisslinger G, Lotsch J . Pyrosequencing-based screening for genetic polymorphisms in cytochrome P450 2B6 of potential clinical relevance. Pharmacogenomics 2006; 7: 995–1002.

    Article  CAS  PubMed  Google Scholar 

  45. Schaeffeler E, Schwab M, Eichelbaum M, Zanger UM . CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR. Hum Mutat 2003; 22: 476–485.

    Article  CAS  PubMed  Google Scholar 

  46. Soderback E, Zackrisson A-L, Lindblom B, Alderborn A . Determination of CYP2D6 gene copy number by pyrosequencing. Clin Chem 2005; 51: 522–531.

    Article  CAS  PubMed  Google Scholar 

  47. Stamer UM, Stuber F . Genetic factors in pain and its treatment. Curr Opin Anaesthesiol 2007; 20: 478–484.

    Article  PubMed  Google Scholar 

  48. Stuven T, Griese EU, Kroemer HK, Eichelbaum M, Zanger UM . Rapid detection of CYP2D6 null alleles by long distance- and multiplex-polymerase chain reaction. Pharmacogenetics 1996; 6: 417–421.

    Article  CAS  PubMed  Google Scholar 

  49. Toriello M, Meccariello P, Mazzaccara C, Di Fiore R, Esposito C, Sacchetti L . Comparison of the TaqMan and LightCycler systems in pharmacogenetic testing: evaluation of CYP2C9*2/*3 polymorphisms. Clin Chem Lab Med 2006; 44: 285–287.

    Article  CAS  PubMed  Google Scholar 

  50. Weise A, Grundler S, Zaumsegel D, Klotzek M, Grondahl B, Forst T et al. Development and evaluation of a rapid and reliable method for cytochrome P450 2C8 genotyping. Clin Lab 2004; 50: 141–148.

    CAS  PubMed  Google Scholar 

  51. Weise A, Lambertz U, Thome N, Bartz U, Krefft M, Mockenhaupt F et al. A fast and reliable single-run method for genotyping of the human cytochrome P450 2C8 gene for different ethnic groups. Clin Lab 2006; 52: 599–603.

    CAS  PubMed  Google Scholar 

  52. Wen S, Wang H, Ding Y, Liang H, Wang S . Screening of 12 SNPs of CYP3A4 in a Chinese population using oligonucleotide microarray. Genet Test 2004; 8: 411–416.

    Article  CAS  PubMed  Google Scholar 

  53. Wen SY, Wang H, Sun OJ, Wang SQ . Rapid detection of the known SNPs of CYP2C9 using oligonucleotide microarray. World J Gastroenterol 2003; 9: 1342–1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu X, Zhou Y, Xu S . Detection of CYP I A1 polymorphisms with a colorimetric method based on mismatch hybridization. Clin Chim Acta 2002; 323: 103–109.

    Article  CAS  PubMed  Google Scholar 

  55. Zackrisson A-L, Lindblom B . Identification of CYP2D6 alleles by single nucleotide polymorphism analysis using pyrosequencing. Eur J Clin Pharmacol 2003; 59: 521–526.

    Article  CAS  PubMed  Google Scholar 

  56. Zainuddin Z, Teh LK, Suhaimi AWM, Salleh MZ, Ismail R . A simple method for the detection of CYP2C9 polymorphisms: nested allele-specific multiplex polymerase chain reaction. Clin Chim Acta 2003; 336: 97–102.

    Article  CAS  PubMed  Google Scholar 

  57. Armstrong M, Daly AK, Blennerhassett R, Ferrier N, Idle JR . Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype [see comment]. Br J Psychiatry 1997; 170: 23–26.

    Article  CAS  PubMed  Google Scholar 

  58. Andreassen OA, MacEwan T, Gulbrandsen AK, McCreadie RG, Steen VM . Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients. Psychopharmacology (Berl) 1997; 131: 174–179.

    Article  CAS  Google Scholar 

  59. Arthur H, Dahl ML, Siwers B, Sjoqvist F . Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. J Clin Psychopharmacol 1995; 15: 211–216.

    Article  CAS  PubMed  Google Scholar 

  60. Basile VS, Ozdemir V, Masellis M, Walker ML, Meltzer HY, Lieberman JA et al. A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry 2000; 5: 410–417.

    Article  CAS  PubMed  Google Scholar 

  61. Boke O, Gunes S, Kara N, Aker S, Sahin AR, Basar Y et al. Association of serotonin 2A receptor and lack of association of CYP1A2 gene polymorphism with tardive dyskinesia in a Turkish population. DNA Cell Biol 2007; 26: 527–531.

    Article  CAS  PubMed  Google Scholar 

  62. Culav-Sumic J, Topic E, Baric V, Stefanovic M, Martic-Biocina S, Skocic D et al. CYP2D6 polymorphism and side effects in schizophrenia and schizoaffective psychosis. Periodicum Biologorum 2001; 103: 315–319.

    CAS  Google Scholar 

  63. Ellingrod VL, Miller D, Schultz SK, Wehring H, Arndt S . CYP2D6 polymorphisms and atypical antipsychotic weight gain. Psychiatr Genet 2002a; 12: 55–58.

    Article  PubMed  Google Scholar 

  64. Ellingrod VL, Schultz SK, Arndt S . Association between cytochrome P4502D6 (CYP2D6) genotype, antipsychotic exposure, and abnormal involuntary movement scale (AIMS) score. Psychiatr Genet 2000; 10: 9–11.

    Article  CAS  PubMed  Google Scholar 

  65. Ellingrod VL, Schultz SK, Arndt S . Abnormal movements and tardive dyskinesia in smokers and nonsmokers with schizophrenia genotyped for cytochrome P450 2D6. Pharmacotherapy 2002b; 22: 1416–1419.

    Article  PubMed  Google Scholar 

  66. Fu Y, Fan C-H, Deng H-H, Hu S-H, Lv D-P, Li L-H et al. Association of CYP2D6 and CYP1A2 gene polymorphism with tardive dyskinesia in Chinese schizophrenic patients. Acta Pharm Sinica 2006; 27: 328–332.

    Article  CAS  Google Scholar 

  67. Inada T, Senoo H, Iijima Y, Yamauchi T, Yagi G . Cytochrome P450 II D6 gene polymorphisms and the neuroleptic-induced extrapyramidal symptoms in Japanese schizophrenic patients. Psychiatr Genet 2003; 13: 163–168.

    Article  PubMed  Google Scholar 

  68. Iwahashi K, Isobe C, Waga C . The influence that the polymorphisms of cytochrome P450 (CYP) gene, thrifty gene and pharmacodynamic-related gene give to a side effect of olanzapine. Int Clin Psychopharmacol 2007; 22: P21.

    Article  Google Scholar 

  69. Jaanson P, Marandi T, Kiivet RA, Vasar V, Vaan S, Svensson JO et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berl) 2002; 162: 67–73.

    Article  CAS  Google Scholar 

  70. Kapitany T, Meszaros K, Lenzinger E, Schindler SD, Barnas C, Fuchs K et al. Genetic polymorphisms for drug metabolism (CYP2D6) and tardive dyskinesia in schizophrenia. Schizophr Res 1998; 32: 101–106.

    Article  CAS  PubMed  Google Scholar 

  71. Lam LC, Garcia-Barcelo MM, Ungvari GS, Tang WK, Lam VK, Kwong SL et al. Cytochrome P450 2D6 genotyping and association with tardive dyskinesia in Chinese schizophrenic patients. Pharmacopsychiatry 2001; 34: 238–241.

    Article  CAS  PubMed  Google Scholar 

  72. Liou YJ, Wang YC, Bai YM, Lin CC, Yu SC, Liao DL et al. Cytochrome P-450 2D6*10 C188T polymorphism is associated with antipsychotic-induced persistent tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology 2004; 49: 167–173.

    Article  CAS  PubMed  Google Scholar 

  73. Lohmann PL, Bagli M, Krauss H, Muller DJ, Schulze TG, Fangerau H et al. CYP2D6 polymorphism and tardive dyskinesia in schizophrenic patients. Pharmacopsychiatry 2003; 36: 73–78.

    Article  CAS  PubMed  Google Scholar 

  74. Matsumoto C, Ohmori O, Shinkai T, Hori H, Nakamura J . Genetic association analysis of functional polymorphisms in the cytochrome P450 1A2 (CYP1A2) gene with tardive dyskinesia in Japanese patients with schizophrenia. Psychiatr Genet 2004; 14: 209–213.

    Article  PubMed  Google Scholar 

  75. Mihara K, Kondo T, Higuchi H, Takahashi H, Yoshida K, Shimizu T et al. Tardive dystonia and genetic polymorphisms of cytochrome P4502D6 and dopamine D-2 and D-3 receptors: a preliminary finding. Am J Med Genet 2002; 114: 693–695.

    Article  PubMed  Google Scholar 

  76. Nikoloff D, Shim JC, Fairchild M, Patten N, Fijal BA, Koch WH et al. Association between CYP2D6 genotype and tardive dyskinesia in Korean schizophrenics. Pharmacogenomics J 2002; 2: 400–407.

    Article  CAS  PubMed  Google Scholar 

  77. Ohmori O, Kojima H, Shinkai T, Terao T, Suzuki T, Abe K . Genetic association analysis between CYP2D6*2 allele and tardive dyskinesia in schizophrenic patients. Psychiatry Res 1999; 87: 239–244.

    Article  CAS  PubMed  Google Scholar 

  78. Ohmori O, Suzuki T, Kojima H, Shinkai T, Terao T, Mita T et al. Tardive dyskinesia and debrisoquine 4-hydroxylase (CYP2D6) genotype in Japanese schizophrenics. Schizophr Res 1998; 32: 107–113.

    Article  CAS  PubMed  Google Scholar 

  79. Schulze TG, Schumacher J, Muller DJ, Krauss H, Alfter D, Maroldt A et al. Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 498–501.

    Article  CAS  PubMed  Google Scholar 

  80. Scordo MG, Spina E, Romeo P, Dahl ML, Bertilsson L, Johansson I et al. CYP2D6 genotype and antipsychotic-induced extrapyramidal side effects in schizophrenic patients. Eur J Clin Pharmacol 2000; 56: 679–683.

    Article  CAS  PubMed  Google Scholar 

  81. Segman RH, Heresco-Levy U, Yakir A, Goltser T, Strous R, Greenberg DA et al. Interactive effect of cytochrome P450 17alpha-hydroxylase and dopamine D3 receptor gene polymorphisms on abnormal involuntary movements in chronic schizophrenia. Biol Psychiatry 2002; 51: 261–263.

    Article  CAS  PubMed  Google Scholar 

  82. Tay JKX, Tan CH, Chong SA, Tan EC . Functional polymorphisms of the cytochrome P450 lA2 (CYPlA2) gene and prolonged QTc interval in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31: 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  83. Thanacoody HKR, Daly AK, Thomas SHL . Influence of CYP2D6 and CYP2C19 genotypes on the QTc intervals of psychiatric patients taking thioridazine. Br J Clin Pharmacol 2003; 55: 445.

    Google Scholar 

  84. Thanacoody RHK, Daly AK, Reilly JG, Ferrier IN, Thomas SHL . Factors affecting drug concentrations and QT interval during thioridazine therapy. Clin Pharmacol Ther 2007; 82: 555–565.

    Article  CAS  PubMed  Google Scholar 

  85. Tiwari AK, Deshpande SN, Lerer B, Nimgaonkar VL, Thelma BK . Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: V. Association of CYP1A2 1545 C>T polymorphism. Pharmacogenomics J 2007; 7: 305–311.

    Article  CAS  PubMed  Google Scholar 

  86. Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Lerer B, Nimgaonkar VL et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: III. Lack of association of CYP3A4 and CYP2D6gene polymorphisms. Schizophr Res 2005b; 75: 21–26.

    Article  PubMed  Google Scholar 

  87. Tiwari AK, Deshpande SN, Rao AR, Bhatia T, Mukit SR, Shriharsh V et al. Genetic susceptibility to tardive dyskinesia in chronic schizophrenia subjects: I. Association of CYP1A2 gene polymorphism. Pharmacogenomics J 2005a; 5: 60–69.

    Article  CAS  PubMed  Google Scholar 

  88. Topic E, Stefanovic M, Ivanisevic AM, Blazinic F, Culav J, Skocilic Z . CYP2D6 genotyping in patients on psychoactive drug therapy. Clin Chem Lab Med 2000; 38: 921–927.

    Article  CAS  PubMed  Google Scholar 

  89. Lane HY, Liu YC, Huang CL, Chang YC, Wu PL, Lu CT et al. Risperidone-related weight gain—genetic and nongenetic predictors. J Clin Psychopharmacol 2006; 26: 128–134.

    Article  CAS  PubMed  Google Scholar 

  90. Aitchison KJ, Munro J, Wright P, Smith S, Makoff AJ, Sachse C et al. Failure to respond to treatment with typical antipsychotics is not associated with CYP2D6 ultrarapid hydroxylation. Br J Clin Pharmacol 1999; 48: 388–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Arranz MJ, Dawson E, Shaikh S, Sham P, Sharma T, Aitchison K et al. Cytochrome P4502D6 genotype does not determine response to clozapine. Br J Clin Pharmacol 1995; 39: 417–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Riedel M, Schwarz MJ, Strassnig M, Spellmann I, Muller-Arends A, Weber K et al. Risperidone plasma levels, clinical response and side-effects. Eur Arch Psychiatry Clin Neurosci 2005; 255: 261–268.

    Article  PubMed  Google Scholar 

  93. Wang L, Yu L, Zhang AP, Fang C, Du J, Gu NF et al. Serum prolactin levels, plasma risperidone levels, polymorphism of cytochrome P450 2D6 and clinical response in patients with schizophrenia. J Psychopharmacol (Oxf) 2007; 21: 837–842.

    Article  CAS  Google Scholar 

  94. Yasar U, Babaoglu MO, Balibey H, Cetin M, Lundgren S, Rane A et al. Association of the cytochrome P450 1A2*1F polymorphism with clozapine response in schizophrenic patients. FASEB J 2007; 21: A196.

    Google Scholar 

  95. Brockmoller J, Kirchheiner J, Schmider J, Walter S, Sachse C, Muller-Oerlinghausen B et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and on the outcome of haloperidol treatment. Clin Pharmacol Ther 2002; 72: 438–452.

    Article  CAS  PubMed  Google Scholar 

  96. Hamelin BA, Dorson PG, Pabis D, Still D, Bouchard RH, Pourcher E et al. CYP2D6 mutations and therapeutic outcome in schizophrenic patients. Pharmacotherapy 1999; 19: 1057–1063.

    Article  CAS  PubMed  Google Scholar 

  97. Kakihara S, Yoshimura R, Shinkai K, Matsumoto C, Goto M, Kaji K et al. Prediction of response to risperidone treatment with respect to plasma concentrations of risperidone, catecholamine metabolites, and polymorphism of cytochrome P450 2D6. Int Clin Psychopharmacol 2005; 20: 71–78.

    Article  PubMed  Google Scholar 

  98. Panagiotidis G, Arthur HW, Lindh JD, Dahl ML, Sjoqvist F . Depot haloperidol treatment in outpatients with schizophrenia on monotherapy: impact of CYP2D6 polymorphism on pharmacokinetics and treatment outcome. Ther Drug Monit 2007; 29: 417–422.

    Article  CAS  PubMed  Google Scholar 

  99. Plesnicar BK, Zalar B, Breskvar K, Dolzan V . The influence of the CYP2D6 polymorphism on psychopathological and extrapyramidal symptoms in the patients on long-term antipsychotic treatment. J Psychopharmacol (Oxf) 2006; 20: 829–833.

    Article  CAS  Google Scholar 

  100. Dettling M, Sachse C, Muller-Oerlinghausen B, Roots I, Brockmoller J, Rolfs A et al. Clozapine-induced agranulocytosis and hereditary polymorphisms of clozapine metabolizing enzymes: no association with myeloperoxidase and cytochrome P450206. Pharmacopsychiatry 2000; 33: 218–220.

    Article  CAS  PubMed  Google Scholar 

  101. Jeon JY, Kim JR, Lim KS, Kim JW, Kim BH, Tae YM et al. CYP2D6 genotype affects aripiprazole clearance in Korean patients: population pharmacokinetic analysis. Clin Pharmacol Ther 2007; 81: S80.

    Google Scholar 

  102. Jerling M, Dahl ML, Aberg-Wistedt A, Liljenberg B, Landell NE, Bertilsson L et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 1996; 59: 423–428.

    Article  CAS  PubMed  Google Scholar 

  103. de Leon J, Diaz FJ, Wedlund P, Josiassen RC, Cooper TB, Simpson GM . Haloperidol half-life after chronic dosing. J Clin Psychopharmacol 2004; 24: 656–660.

    Article  CAS  PubMed  Google Scholar 

  104. Jorgensen AL, Williamson PR . Methodological quality of pharmacogenetic studies: issues of concern. Stat Med 2008; 27: 6547–6569.

    Article  PubMed  Google Scholar 

  105. Faber MS, Jetter A, Fuhr U . Assessment of CYP1A2 activity in clinical practice: why, how, and when? Basic Clin Pharmacol Toxicol 2005; 97: 125–134.

    Article  CAS  PubMed  Google Scholar 

  106. Miles W, Sheridan J, Wheeler A . The effect of knowing the CYP 450 metaboliser status on clinician prescribing behaviour when treating psychosis with risperidone. Aust N Z J Psychiatry 2007; 41: A60.

    Google Scholar 

  107. Bradford LD . CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–243.

    Article  CAS  PubMed  Google Scholar 

  108. Kirchheiner J, Seeringer A . Clinical implications of pharmacogenetics of cytochrome P450 drug metabolizing enzymes. Biochim Biophys Acta 2007; 1770: 489–494.

    Article  CAS  PubMed  Google Scholar 

  109. Risperidone package insert (Risperdal, Janssen—US), Rev 11/97, Rec 07/98.

  110. Dahl SG . Active metabolites of neuroleptic drugs: possible contribution to therapeutic and toxic effects. Ther Drug Monit 1982; 4: 33–40.

    Article  CAS  PubMed  Google Scholar 

  111. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C . Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116: 496–526.

    Article  CAS  PubMed  Google Scholar 

  112. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  PubMed  Google Scholar 

  113. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tsai H-T, Caroff SN, Miller DD, McEvoy J, Lieberman JA, North KE et al. A candidate gene study of tardive dyskinesia in the CATIE schizophrenia trial. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 336–340.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are pleased to acknowledge the contributions of the other members of the Health Technology Assessment review team: Professor Adrian Bagust, Dr Angela Boland, Dr Sophie Beale, Dr Katherine Payne and Dr Phillip de Warren-Penny. We also thank Professor Paula Williamson for her input into the research protocol design and Ms Janet Atkinson who provided invaluable administrative support, including obtaining bibliographic sources. We also thank the anonymous referees for their valuable comments on the previous draft of this paper. This project was funded by the National Institute for Health Research Health Technology Assessment Programme (project number 06/28/01). The views and opinions expressed herein are those of the authors and do not necessarily reflect those of the UK Government Department of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N Fleeman.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Supplementary Figure 1a (JPG 74 kb)

Supplementary Figure 1b (JPG 79 kb)

Supplementary Figure 1c (JPG 82 kb)

Supplementary Figure 1d (JPG 78 kb)

Supplementary Figure 2a (JPG 60 kb)

Supplementary Figure 2b (JPG 61 kb)

Supplementary Figure 2c (JPG 61 kb)

Supplementary Figure 2d (JPG 64 kb)

Supplementary Figure 3a (JPG 55 kb)

Supplementary Figure 3b (JPG 62 kb)

Supplementary Figure 3c (JPG 65 kb)

Supplementary Figure 3d (JPG 60 kb)

Supplementary Figure 4a (JPG 52 kb)

Supplementary Figure 4b (JPG 60 kb)

Supplementary Figure 4c (JPG 52 kb)

Supplementary Figure 5a (JPG 42 kb)

Supplementary Figure 5b (JPG 41 kb)

Supplementary Figure 5c (JPG 43 kb)

Supplementary Figure 5d (JPG 45 kb)

Supplementary Figure 6a (JPG 38 kb)

Supplementary Figure 6b (JPG 38 kb)

Supplementary Figure 6c (JPG 38 kb)

Supplementary Figure 7a (JPG 35 kb)

Supplementary Figure 7b (JPG 35 kb)

Supplementary Figure 7c (JPG 36 kb)

Supplementary Figure 7d (JPG 36 kb)

Supplementary Figure 8 (JPG 37 kb)

Supplementary Figure Legends (DOC 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleeman, N., Dundar, Y., Dickson, R. et al. Cytochrome P450 testing for prescribing antipsychotics in adults with schizophrenia: systematic review and meta-analyses. Pharmacogenomics J 11, 1–14 (2011). https://doi.org/10.1038/tpj.2010.73

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.73

Keywords

This article is cited by

Search

Quick links