Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans

Abstract

Prostate cancer is a common malignancy that disproportionately affects African-American men. Environmental factors and variation in genes responsible for chemical and dietary carcinogen metabolism and DNA damage repair may modulate risk. Fourteen single nucleotide polymorphisms in NAT2 and four NER genes (ERCC1, XPF/ERCC4, XPG/ERCC5 and CSB/ERCC6) were genotyped in a case–control study of 254 African-American prostate cancer cases and 301 healthy controls from Washington, DC. Smoking status, BMI, age and genetic ancestry were included as covariates in the association analyses. We found that individuals homozygous for the XPG/ERCC5 −72C/T promoter polymorphism had a significant reduction in risk, for prostate cancer (OR=0.12; 95% CI=0.03–0.48). A haplotype trend regression test also revealed a protective effect for the haplotype bearing the T allele (P=0.003). In silica analyses suggest a functional implication for the promoter variant since it deletes a GCF transcriptional factor-binding site responsible for the downregulation of transcription. The protective effect of the promoter SNP on risk for prostate cancer was independent of smoking. In contrast, none of the SNPs typed for NAT2, ERCC1, ERCC4 and ERCC6 showed significant association with risk. Additional tests for genotype interactions were not significant. We note that there may be other factors, such as dietary exposures, which may modulate prostate cancer risk in combination with genetic variation within the NAT2 and NER genes. Our results, in combination with previous observations of LOH for ERCC5 in prostate tumors, provide further evidence for a role of XPG/ERCC5 in the etiology of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

References

  1. Hu JJ, Hall MC, Grossman L, Hedayati M, McCullough DL, Lohman K . Deficient nucleotide excision repair capacity enhances human prostate cancer risk. Cancer Res 2004; 64: 1197–1201.

    Article  CAS  PubMed  Google Scholar 

  2. Lockett KL, Snowhite IV, Hu JJ . Nucleotide-excision repair and prostate cancer risk. Cancer Lett 2005; 220: 125–135.

    Article  CAS  PubMed  Google Scholar 

  3. Hsing AW, Tsao L, Devesa SS . International trends and patterns of prostate cancer incidence and mortality. Int J Cancer 2000; 85: 60–67.

    Article  CAS  PubMed  Google Scholar 

  4. Hein DW . N-Acetyltransferase genetics and their role in predisposition to aromatic and heterocyclic amine-induced carcinogenesis. Toxicol Lett 2000; 112–113: 349–356.

    Article  PubMed  Google Scholar 

  5. Costa S, Pinto D, Morais A, Vasconcelos A, Oliveira J, Lopes C . Acetylation genotype and the genetic susceptibility to prostate cancer in a southern European population. Prostate 2005; 64: 246–252.

    Article  CAS  PubMed  Google Scholar 

  6. Agudo A, Sala N, Pera G, Capella G, Berenguer A, Garcia N . No association between polymorphisms in CYP2E1, GSTM1, NAT1, NAT2 and the risk of gastric adenocarcinoma in the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2006; 15: 1043–1045.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Buheissi SZ, Patel HR, Meinl W, Hewer A, Bryan RL, Glatt H . N-Acetyltransferase and sulfotransferase activity in human prostate: potential for carcinogen activation. Pharmacogenet Genomics 2006; 16: 391–399.

    Article  CAS  PubMed  Google Scholar 

  8. Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M, Hein DW . NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005; 366: 649–659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hamasaki T, Inatomi H, Katoh T, Aono H, Ikuyama T, Muratani T . N-acetyltransferase-2 gene polymorphism as a possible biomarker for prostate cancer in Japanese men. Int J Urol 2003; 10: 167–173.

    Article  CAS  PubMed  Google Scholar 

  10. Pistorius S, Goergens H, Engel C, Plaschke J, Krueger S, Hoehl R . N-Acetyltransferase (NAT) 2 acetylator status and age of tumour onset in patients with sporadic and familial, microsatellite stable (MSS) colorectal cancer. Int J Colorectal Dis 2007; 22: 137–143.

    Article  PubMed  Google Scholar 

  11. Cheng L, Guan Y, Li L, Legerski RJ, Einspahr J, Bangert J . Expression in normal human tissues of five nucleotide excision repair genes measured simultaneously by multiplex reverse transcription-polymerase chain reaction. Cancer Epidemiol Biomarkers Prev 1999; 8: 801–807.

    CAS  PubMed  Google Scholar 

  12. Mechanic LE, Millikan RC, Player J, de Cotret AR, Winkel S, Worley K . Polymorphisms in nucleotide excision repair genes, smoking and breast cancer in African Americans and whites: a population-based case-control study. Carcinogenesis 2006; 27: 1377–1385.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng L, Spitz MR, Hong WK, Wei Q . Reduced expression levels of nucleotide excision repair genes in lung cancer: a case–control analysis. Carcinogenesis 2000; 21: 1527–1530.

    Article  CAS  PubMed  Google Scholar 

  14. Huang WY, Berndt SI, Kang D, Chatterjee N, Chanock SJ, Yeager M . Nucleotide excision repair gene polymorphisms and risk of advanced colorectal adenoma: XPC polymorphisms modify smoking-related risk. Cancer Epidemiol Biomarkers Prev 2006; 15: 306–311.

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Liang D, Wang Y, Lu C, Wu X . Effects of N-acetyl transferase 1 and 2 polymorphisms on bladder cancer risk in Caucasians. Mutat Res 2005; 581: 97–104.

    Article  CAS  PubMed  Google Scholar 

  16. Prawan A, Kukongviriyapan V, Tassaneeyakul W, Pairojkul C, Bhudhisawasdi V . Association between genetic polymorphisms of CYP1A2, arylamine N-acetyltransferase 1 and 2 and susceptibility to cholangiocarcinoma. Eur J Cancer Prev 2005; 14: 245–250.

    Article  CAS  PubMed  Google Scholar 

  17. Tiemersma EW, Voskuil DW, Bunschoten A, Hogendoorn EA, Witteman BJ, Nagengast FM . Risk of colorectal adenomas in relation to meat consumption, meat preparation, and genetic susceptibility in a Dutch population. Cancer Causes Control 2004; 15: 225–236.

    Article  PubMed  Google Scholar 

  18. Garcia-Closas M, Malats N, Real FX, Welch R, Kogevinas M, Chatterjee N . Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 2006; 15: 536–542.

    Article  CAS  PubMed  Google Scholar 

  19. Bonilla C, Shriver MD, Parra EJ, Jones A, Fernandez JR . Ancestral proportions and their association with skin pigmentation and bone mineral density in Puerto Rican women from New York city. Hum Genet 2004; 115: 57–68.

    Article  PubMed  Google Scholar 

  20. Hoggart CJ, Parra EJ, Shriver MD, Bonilla C, Kittles RA, Clayton DG . Control of confounding of genetic associations in stratified populations. Am J Hum Genet 2003; 72: 1492–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kittles RA, Baffoe-Bonnie AB, Moses TY, Robbins CM, Ahaghotu C, Huusko P . A common nonsense mutation in EphB2 is associated with prostate cancer risk in African American men with a positive family history. J Med Genet 2006; 43: 507–511.

    Article  CAS  PubMed  Google Scholar 

  22. Shriver MD, Parra EJ, Dios S, Bonilla C, Norton H, Jovel C . Skin pigmentation, biogeographical ancestry and admixture mapping. Hum Genet 2003; 112: 387–399.

    PubMed  Google Scholar 

  23. Falush D, Stephens M, Pritchard JK . Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 2003; 164: 1567–1587.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zaykin D, Westfall P, Young S, Karnoub M, Wagner M, Ehm M . Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 2002; 53: 79–91.

    Article  PubMed  Google Scholar 

  25. Wang CY, Debiec-Rychter M, Schut HA, Morse P, Jones RF, Archer C . N-Acetyltransferase expression and DNA binding of N-hydroxyheterocyclic amines in human prostate epithelium. Carcinogenesis 1999; 20: 1591–1595.

    Article  CAS  PubMed  Google Scholar 

  26. Rovito Jr PM, Morse PD, Spinek K, Newman N, Jones RF, Wang CY . Heterocyclic amines and genotype of N-acetyltransferases as risk factors for prostate cancer. Prostate Cancer Prostatic Dis 2005; 8: 69–74.

    Article  CAS  PubMed  Google Scholar 

  27. Srivastava DS, Mittal RD . Genetic polymorphism of the N-acetyltransferase 2 gene, and susceptibility to prostate cancer: a pilot study in north Indian population. BMC Urol 2005; 5: 12.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ritchey JD, Huang WY, Chokkalingam AP, Gao YT, Deng J, Levine P . Genetic variants of DNA repair genes and prostate cancer: a population-based study. Cancer Epidemiol Biomarkers Prev 2005; 14: 1703–1709.

    Article  CAS  PubMed  Google Scholar 

  29. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS . DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 2004; 13: 23–29.

    Article  CAS  PubMed  Google Scholar 

  30. Bloom JR, Stewart SL, Oakley-Girvans I, Banks PJ, Chang S . Family history, perceived risk, and prostate cancer screening among African American men. Cancer Epidemiol Biomarkers Prev 2006; 15: 2167–2173.

    Article  PubMed  Google Scholar 

  31. Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y . The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 1999; 275: 89–92.

    Article  CAS  PubMed  Google Scholar 

  32. Hyytinen ER, Frierson Jr HF, Sipe TW, Li CL, Degeorges A, Sikes RA . Loss of heterozygosity and lack of mutations of the XPG/ERCC5 DNA repair gene at 13q33 in prostate cancer. Prostate 1999; 41: 190–195.

    Article  CAS  PubMed  Google Scholar 

  33. Klungland A, Hoss M, Gunz D, Constantinou A, Clarkson SG, Doetsch PW . Base excision repair of oxidative DNA damage activated by XPG protein. Mol Cell 1999; 3: 33–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the men who volunteered to participate in this genetic study. This research was funded in part by the National Institutes of Health (S06GM08016) and the Department of Defense (DAMD W81XWH-07-1-0203 and DAMD W81XWH-06-1-0066).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Kittles.

Additional information

Electronic-database information

dbSNP for SNP information http://www.ncbi.nlm.nih.gov/dbSNP

HAPMAP for SNP and allele frequency information in Yoruba, Chinese and CEPH samples http://www.hapmap.org

Tfsitescan website for transcription factor-binding site information http://www.ifti.org

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hooker, S., Bonilla, C., Akereyeni, F. et al. NAT2 and NER genetic variants and sporadic prostate cancer susceptibility in African Americans. Prostate Cancer Prostatic Dis 11, 349–356 (2008). https://doi.org/10.1038/sj.pcan.4501027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.pcan.4501027

Keywords

This article is cited by

Search

Quick links