Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phospholipase Cγ1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion

Abstract

Phospholipase Cγ1 (PLCγ1) is activated downstream of a variety of extracellular stimuli and has previously been implicated in the regulation of motility responses central to tumour cell invasion. In this study, we used a novel RNAi vector system to achieve conditional PLCγ1 knockdown in PC3LN3 human prostate carcinoma cells for further evaluation of PLCγ1 in tumour cell biology. Using this approach, we revealed a role for PLCγ1 in the regulation of PC3LN3 cell adhesion that appears to be independent of its effects on tumour cell chemotactic migration and spreading in response to extracellular matrix. Subsequent microarray analysis of PLCγ1-knockdown cells revealed Rap GEF1 mRNA to be decreased in response to PLCγ1 loss. This translated into a decrease in Rap GEF1 protein levels and a significant loss of Rap1 activity in PLCγ1-knockdown cells. Transient knockdown of Rap GEF1 caused a reduction in PC3LN3 adhesion while overexpression of Rap GEF1 rescued the PLCγ1 knockdown-induced adhesion defect. These data highlight control of the Rap GEF1–Rap1 molecular switch as a specific requirement for PLCγ1-mediated tumour cell adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams JC . (2001). Cell–matrix contact structures. Cell Mol Life Sci 58: 371–392.

    Article  CAS  Google Scholar 

  • Arai A, Nosaka Y, Kohsaka H, Miyasaka N, Miura O . (1999). CrkL activates integrin-mediated hematopoietic cell adhesion through the guanine nucleotide exchange factor C3G. Blood 93: 3713–3722.

    CAS  PubMed  Google Scholar 

  • Aydar E, Onganer P, Perrett R, Djamgoz MB, Palmer CP . (2006). The expression and functional characterization of sigma (sigma) 1 receptors in breast cancer cell lines. Cancer Lett 242: 245–257.

    Article  CAS  Google Scholar 

  • Bernardi B, Guidetti GF, Campus F, Crittenden JR, Graybiel AM, Balduini C et al. (2006). The small GTPase Rap1b regulates the cross talk between platelet integrin alpha2beta1 and integrin alphaIIbbeta3. Blood 107: 2728–2735.

    Article  CAS  Google Scholar 

  • Bos JL . (2005). Linking Rap to cell adhesion. Curr Opin Cell Biol 17: 123–128.

    Article  CAS  Google Scholar 

  • Choi JH, Yang YR, Lee SK, Kim IS, Ha SH, Kim EK et al. (2007). Phospholipase C-gamma1 potentiates integrin-dependent cell spreading and migration through Pyk2/paxillin activation. Cell Signal 19: 1784–1796.

    Article  CAS  Google Scholar 

  • de Jong R, van Wijk A, Heisterkamp N, Groffen J . (1998). C3G is tyrosine-phosphorylated after integrin-mediated cell adhesion in normal but not in Bcr/Abl expressing cells. Oncogene 17: 2805–2810.

    Article  CAS  Google Scholar 

  • Guerrero C, Fernandez-Medarde A, Rojas JM, Font de Mora J, Esteban LM, Santos E . (1998). Transformation suppressor activity of C3G is independent of its CDC25-homology domain. Oncogene 16: 613–624.

    Article  CAS  Google Scholar 

  • Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA et al. (2006). Reconstructing and deconstructing agonist-induced activation of integrin alphaIIbbeta3. Curr Biol 16: 1796–1806.

    Article  CAS  Google Scholar 

  • Inoue O, Suzuki-Inoue K, Dean WL, Frampton J, Watson SP . (2003). Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J Cell Biol 160: 769–780.

    Article  CAS  Google Scholar 

  • Jones NP, Katan M . (2007). Role of phospholipase C{gamma}1 in cell spreading requires association with a {beta}-Pix/GIT1-containing complex, leading to activation of Cdc42 and Rac1. Mol Cell Biol 27: 5790–5805.

    Article  CAS  Google Scholar 

  • Jones NP, Peak J, Brader S, Eccles SA, Katan M . (2005). PLCgamma1 is essential for early events in integrin signalling required for cell motility. J Cell Sci 118: 2695–2706.

    Article  CAS  Google Scholar 

  • Katagiri K, Shimonaka M, Kinashi T . (2004). Rap1-mediated lymphocyte function-associated antigen-1 activation by the T cell antigen receptor is dependent on phospholipase C-gamma1. J Biol Chem 279: 11875–11881.

    Article  CAS  Google Scholar 

  • Mamoune A, Kassis J, Kharait S, Kloeker S, Manos E, Jones DA et al. (2004). DU145 human prostate carcinoma invasiveness is modulated by urokinase receptor (uPAR) downstream of epidermal growth factor receptor (EGFR) signaling. Exp Cell Res 299: 91–100.

    Article  CAS  Google Scholar 

  • Manos EJ, Kim ML, Kassis J, Chang PY, Wells A, Jones DA . (2001). Dolichol-phosphate-mannose-3 (DPM3)/prostin-1 is a novel phospholipase C-gamma regulated gene negatively associated with prostate tumor invasion. Oncogene 20: 2781–2790.

    Article  CAS  Google Scholar 

  • Mouneimne G, Soon L, DesMarais V, Sidani M, Song X, Yip SC et al. (2004). Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J Cell Biol 166: 697–708.

    Article  CAS  Google Scholar 

  • Nogami M, Yamazaki M, Watanabe H, Okabayashi Y, Kido Y, Kasuga M et al. (2003). Requirement of autophosphorylated tyrosine 992 of EGF receptor and its docking protein phospholipase C gamma 1 for membrane ruffle formation. FEBS Lett 536: 71–76.

    Article  CAS  Google Scholar 

  • Ohba Y, Ikuta K, Ogura A, Matsuda J, Mochizuki N, Nagashima K et al. (2001). Requirement for C3G-dependent Rap1 activation for cell adhesion and embryogenesis. EMBO J 20: 3333–3341.

    Article  CAS  Google Scholar 

  • Piechulek T, Rehlen T, Walliser C, Vatter P, Moepps B, Gierschik P . (2005). Isozyme-specific stimulation of phospholipase C-gamma2 by Rac GTPases. J Biol Chem 280: 38923–38931.

    Article  CAS  Google Scholar 

  • Quilliam LA, Rebhun JF, Castro AF . (2002). A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 71: 391–444.

    Article  CAS  Google Scholar 

  • Rebecchi MJ, Pentyala SN . (2000). Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol Rev 80: 1291–1335.

    Article  CAS  Google Scholar 

  • Regunathan J, Chen Y, Kutlesa S, Dai X, Bai L, Wen R et al. (2006). Differential and nonredundant roles of phospholipase Cgamma2 and phospholipase Cgamma1 in the terminal maturation of NK cells. J Immunol 177: 5365–5376.

    Article  CAS  Google Scholar 

  • Sebzda E, Bracke M, Tugal T, Hogg N, Cantrell DA . (2002). Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 3: 251–258.

    Article  CAS  Google Scholar 

  • Shepard CR, Kassis J, Whaley DL, Kim HG, Wells A . (2006). PLCgamma contributes to metastasis of in situ-occurring mammary and prostate tumors. Oncogene 26: 3020–3026.

    Article  Google Scholar 

  • Turner T, Epps-Fung MV, Kassis J, Wells A . (1997). Molecular inhibition of phospholipase C gamma signaling abrogates DU-145 prostate tumor cell invasion. Clin Cancer Res 3: 2275–2282.

    CAS  PubMed  Google Scholar 

  • Tvorogov D, Wang XJ, Zent R, Carpenter G . (2005). Integrin-dependent PLC-gamma1 phosphorylation mediates fibronectin-dependent adhesion. J Cell Sci 118: 601–610.

    Article  CAS  Google Scholar 

  • Vuori K, Hirai H, Aizawa S, Ruoslahti E . (1996). Introduction of p130cas signaling complex formation upon integrin-mediated cell adhesion: a role for Src family kinases. Mol Cell Biol 16: 2606–2613.

    Article  CAS  Google Scholar 

  • Wang Z, Dillon TJ, Pokala V, Mishra S, Labudda K, Hunter B et al. (2006). Rap1-mediated activation of extracellular signal-regulated kinases by cyclic AMP is dependent on the mode of Rap1 activation. Mol Cell Biol 26: 2130–2145.

    Article  CAS  Google Scholar 

  • Wells A . (2000). Tumor invasion: role of growth factor-induced cell motility. Adv Cancer Res 78: 31–101.

    Article  CAS  Google Scholar 

  • Zhang X, Chattopadhyay A, Ji QS, Owen JD, Ruest PJ, Carpenter G et al. (1999). Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc Natl Acad Sci USA 96: 9021–9026.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Tom Bunney for providing the bacterial lysates containing the GST-RalGDS/GST-RafRBD fusion constructs. We acknowledge Dr E Santos (IBMCC, University of Salamanca) for providing the mammalian Rap GEF1 expression vectors and Dr G Carpenter (Vanderbilt University, Nashville) for the rat PLCγ1 vector. We also thank Dr C Palmer (Imperial College, London) for assisting with the SCAMA. J Peak is funded by a Cancer Research UK PhD studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S A Eccles.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peak, J., Jones, N., Hobbs, S. et al. Phospholipase Cγ1 regulates the Rap GEF1-Rap1 signalling axis in the control of human prostate carcinoma cell adhesion. Oncogene 27, 2823–2832 (2008). https://doi.org/10.1038/sj.onc.1210954

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210954

Keywords

Search

Quick links