Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma

Abstract

BRE binds to the cytoplasmic domains of tumor necrosis factor receptor-1 and Fas, and in cell lines can attenuate death receptor-initiated apoptosis by inhibiting t-BID-induced activation of the mitochondrial apoptotic pathway. Overexpression of BRE by transfection can also attenuate intrinsic apoptosis and promote growth of the transfected Lewis lung carcinoma line in mice. There is, however, a complete lack of in vivo data about the protein. Here, we report that by using our BRE-specific monoclonal antibody on the immunohistochemistry of 123 specimens of human hepatocellular carcinoma (HCC), significant differences in BRE expression levels between the paired tumoral and non-tumoral regions (P<2.2e−16) were found. Marked overexpression of BRE was detected in majority of the tumors, whereas most non-tumoral regions expressed the same low level of the protein as in normal livers. To investigate whether BRE overexpression could promote cell survival in vivo, liver-specific transgenic BRE mice were generated and found to be significantly resistant to Fas-mediated lethal hepatic apoptosis. The transgenic model also revealed post-transcriptional regulation of Bre level in the liver, which was not observed in HCC and non-HCC cell lines. Indeed, all cell lines analysed express high levels of BRE. In conclusion, BRE is antiapoptotic in vivo, and may promote tumorigenesis when overexpressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aggarwal BB . (2003). Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 3: 745–756.

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Ni HM, Chen X, DiFrancesca D, Yin XM . (2005). Deletion of Bid impedes cell proliferation and hepatic carcinogenesis. Am J Pathol 166: 1523–1532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barber GN . (2001). Host defense, viruses and apoptosis. Cell Death Differ 8: 113–126.

    Article  CAS  PubMed  Google Scholar 

  • Chan BC, Li Q, Chow SK, Ching AK, Liew CT, Lim PL et al. (2005). BRE enhances in vivo growth of tumor cells. Biochem Biophys Res Commun 326: 268–273.

    Article  CAS  PubMed  Google Scholar 

  • Chan BC, To KF, Pang JC, Chung YF, Lo KW, Tong JH et al. (2002). Generation of monoclonal antibodies against Hong Kong nasopharyngeal carcinoma-associated Epstein–Barr virus latent membrane protein 1 (LMP1). Int J Cancer 102: 492–498.

    Article  CAS  PubMed  Google Scholar 

  • Cheng EH, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T et al. (2001). BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705–711.

    Article  CAS  PubMed  Google Scholar 

  • Ching AK, Li PS, Chan WY, Ma CH, Lee SS, Lim PL et al. (2000). Strand bias in Ig somatic hypermutation is determined by signal sequence within the variable region. Int Immunol 12: 1245–1253.

    Article  CAS  PubMed  Google Scholar 

  • Cory S, Huang DC, Adams JM . (2003). The Bcl-2 family: roles in cell survival and oncogenesis. Oncogene 22: 8590–8607.

    Article  CAS  PubMed  Google Scholar 

  • de la Coste A, Fabre M, McDonell N, Porteu A, Gilgenkrantz H, Perret C et al. (1999a). Differential protective effects of Bcl-xL and Bcl-2 on apoptotic liver injury in transgenic mice. Am J Physiol 277: G702–G708.

    CAS  PubMed  Google Scholar 

  • de La Coste A, Mignon A, Fabre M, Gilbert E, Porteu A, Van Dyke T et al. (1999b). Paradoxical inhibition of c-myc-induced carcinogenesis by Bcl-2 in transgenic mice. Cancer Res 59: 5017–5022.

    CAS  PubMed  Google Scholar 

  • Dive C, Evans CA, Whetton AD . (1992). Induction of apoptosis—new targets for cancer chemotherapy. Semin Cancer Biol 3: 417–427.

    CAS  PubMed  Google Scholar 

  • Dong Y, Hakimi MA, Chen X, Kumaraswamy E, Cooch NS, Godwin AK et al. (2003). Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair. Mol Cell 12: 1087–1099.

    Article  CAS  PubMed  Google Scholar 

  • Engels IH, Stepczynska A, Stroh C, Lauber K, Berg C, Schwenzer R et al. (2000). Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 19: 4563–4573.

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC . (1998). Mitochondria and apoptosis. Science 281: 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ . (1999). BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911.

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Castellino A, Chan JY, Chao MV . (1998). BRE: a modulator of TNF-alpha action. FASEB J 12: 1101–1118.

    Article  CAS  PubMed  Google Scholar 

  • Huang DC, O’Reilly LA, Strasser A, Cory S . (1997). The anti-apoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J 16: 4628–4638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kohler G, Milstein C . (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256: 495–497.

    Article  CAS  PubMed  Google Scholar 

  • Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH . (2000). Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 7: 1166–1173.

    Article  CAS  PubMed  Google Scholar 

  • Lacronique V, Mignon A, Fabre M, Viollet B, Rouquet N, Molina T et al. (1996). Bcl-2 protects from lethal hepatic apoptosis induced by an anti-Fas antibody in mice. Nat Med 2: 80–86.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yoo H, Becker FF, Ali-Osman F, Chan JY . (1995). Identification of a brain- and reproductive-organs-specific gene responsive to DNA damage and retinoic acid. Biochem Biophys Res Commun 206: 764–774.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Ching AK, Chan BC, Chow SK, Lim PL, Ho TC et al. (2004). A death receptor-associated anti-apoptotic protein, BRE, inhibits mitochondrial apoptotic pathway. J Biol Chem 279: 52106–52116.

    Article  CAS  PubMed  Google Scholar 

  • Lowe SW, Cepero E, Evan G . (2004). Intrinsic tumour suppression. Nature 432: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Nagata S . (1997). Apoptosis by death factor. Cell 88: 355–365.

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y et al. (1993). Lethal effect of the anti-Fas antibody in mice. Nature 364: 806–809.

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly LA, Huang DC, Strasser A . (1996). The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J 15: 6979–6990.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pierce RH, Vail ME, Ralph L, Campbell JS, Fausto N . (2002). Bcl-2 expression inhibits liver carcinogenesis and delays the development of proliferating foci. Am J Pathol 160: 1555–1560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rausa FM, Tan Y, Zhou H, Yoo KW, Stolz DB, Watkins SC et al. (2000). Elevated levels of hepatocyte nuclear factor 3beta in mouse hepatocytes influence expression of genes involved in bile acid and glucose homeostasis. Mol Cell Biol 20: 8264–8282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez I, Matsuura K, Khatib K, Reed JC, Nagata S, Vassalli P . (1996). A bcl-2 transgene expressed in hepatocytes protects mice from fulminant liver destruction but not from rapid death induced by anti-Fas antibody injection. J Exp Med 183: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  • Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ et al. (1998). Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17: 1675–1687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strasser A, Harris AW, Huang DC, Krammer PH, Cory S . (1995). Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J 14: 6136–6147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang MK, Wang CM, Shan SW, Chui YL, Ching AK, Chow PH et al. (2006). Comparative proteomic analysis reveals a function of the novel death receptor-associated protein BRE in the regulation of prohibitin and p53 expression and proliferation. Proteomics 6: 2376–2385.

    Article  CAS  PubMed  Google Scholar 

  • Vail ME, Pierce RH, Fausto N . (2001). Bcl-2 delays and alters hepatic carcinogenesis induced by transforming growth factor alpha. Cancer Res 61: 594–601.

    CAS  PubMed  Google Scholar 

  • Vaux DL, Korsmeyer SJ . (1999). Cell death in development. Cell 96: 245–254.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Costa RH, Darnell Jr JE, Chen JD, Van Dyke TA . (1990). Distinct positive and negative elements control the limited hepatocyte and choroid plexus expression of transthyretin in transgenic mice. EMBO J 9: 869–878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B et al. (1999). Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400: 886–891.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hui AY, Chu ES, Cheng AS, Go MY, Chan HL et al. (2007). Expression of a COX-2 transgene in murine liver causes hepatitis. Gut 56: 991–999.

    Article  CAS  PubMed  Google Scholar 

  • Zamzami N, Brenner C, Marzo I, Susin SA, Kroemer G . (1998). Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16: 2265–2282.

    Article  CAS  PubMed  Google Scholar 

  • Zhivotovsky B, Orrenius S . (2006). Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis 27: 1939–1945.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Ms Peggy Hoi-Ying Fung for clerical help in preparing this paper. This work was supported by a direct grant for research of Project Code 2041117 from the Hong Kong Research Grants Council Direct Allocation to the Chinese University of Hong Kong, and partially by an Earmarked Grant CUHK 4421/03M from the Research Grant Committee of Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y-L Chui.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, BL., Ching, AK., To, KF. et al. BRE is an antiapoptotic protein in vivo and overexpressed in human hepatocellular carcinoma. Oncogene 27, 1208–1217 (2008). https://doi.org/10.1038/sj.onc.1210733

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210733

Keywords

This article is cited by

Search

Quick links