Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53

Abstract

Oncostatin M (OSM), a cytokine of the interleukin-6 family, induces growth arrest and differentiation of osteoblastic cells into glial-like/osteocytic cells. Here, we asked whether OSM regulates apoptosis of normal or transformed (osteosarcoma) osteoblasts. We show that OSM sensitizes cells to apoptosis induced by various death inducers such as staurosporine, ultraviolet or tumor necrosis factor-α. Apoptosis is mediated by the mitochondrial pathway, with release of cytochrome c from the mitochondria to the cytosol and activation of caspases-9 and -3. DNA micro-arrays revealed that OSM modulates the expression of Bax, Bad, Bnip3, Bcl-2 and Mcl-1. Pharmacological inhibitors, dominant-negative signal transducer and activator of transcriptions (STATs), stable RNA interference and knockout cells indicated that the transcription factors p53 and STAT5, which are activated by OSM, are implicated in the sensitization to apoptosis, being responsible for Bax induction and Bcl-2 reduction, respectively. These results indicate that, in addition to growth arrest and induced differentiation, OSM also sensitizes normal and transformed osteoblasts to apoptosis by a mechanism implicating (i) activation and nuclear translocation of STAT5 and p53 and (ii) an increased Bax/Bcl-2 ratio. Therefore, association of OSM with kinase inhibitors such as Sts represents new therapeutic opportunities for wild-type p53 osteosarcoma.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Auernhammer CJ, Dorn F, Vlotides G, Hengge S, Kopp FB, Spoettl G et al. (2004). The oncostatin M receptor/gp130 ligand murine oncostatin M induces apoptosis in adrenocortical Y-1 tumor cells. J Endocrinol 180: 479–486.

    Article  CAS  Google Scholar 

  • Auguste P, Guillet C, Fourcin M, Olivier C, Veziers J, Pouplard-Barthelaix A et al. (1997). Signaling of type II oncostatin M receptor. J Biol Chem 272: 15760–15764.

    Article  CAS  Google Scholar 

  • Battle TE, Frank DA . (2002). The role of STATs in apoptosis. Curr Mol Med 2: 381–392.

    Article  CAS  Google Scholar 

  • Baumann H, Wang Y, Richards CD, Jones CA, Black TA, Gross KW . (2000). Endotoxin-induced renal inflammatory response. Oncostatin M as a major mediator of suppressed renin expression. J Biol Chem 275: 22014–22019.

    Article  CAS  Google Scholar 

  • Bellido T, Borba VZ, Roberson P, Manolagas SC . (1997). Activation of the Janus kinase/STAT (signal transducer and activator of transcription) signal transduction pathway by interleukin-6-type cytokines promotes osteoblast differentiation. Endocrinology 138: 3666–3676.

    Article  CAS  Google Scholar 

  • Bellido T, O’Brien CA, Roberson PK, Manolagas SC . (1998). Transcriptional activation of the p21(WAF1, CIP1, SDI1) gene by interleukin-6 type cytokines. A prerequisite for their pro-differentiating and anti-apoptotic effects on human osteoblastic cells. J Biol Chem 273: 21137–21144.

    Article  CAS  Google Scholar 

  • Buitenhuis M, Coffer PJ, Koenderman L . (2004). Signal transducer and activator of transcription 5 (STAT5). Int J Biochem Cell Biol 36: 2120–2124.

    Article  CAS  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  Google Scholar 

  • Casey G, Lo-Hsueh M, Lopez ME, Vogelstein B, Stanbridge EJ . (1991). Growth suppression of human breast cancer cells by the introduction of a wild-type p53 gene. Oncogene 6: 1791–1797.

    CAS  Google Scholar 

  • Chandar N, Billig B, McMaster J, Novak J . (1992). Inactivation of p53 gene in human and murine osteosarcoma cells. Br J Cancer 65: 208–214.

    Article  CAS  Google Scholar 

  • Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K et al. (1999). Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13: 2604–2616.

    Article  CAS  Google Scholar 

  • Chen SH, Benveniste EN . (2004). Oncostatin M: a pleiotropic cytokine in the central nervous system. Cytokine Growth Factor Rev 15: 379–391.

    Article  CAS  Google Scholar 

  • Chipoy C, Berreur M, Couillaud S, Pradal G, Vallette F, Colombeix C et al. (2004). Downregulation of osteoblast markers and induction of the glial fibrillary acidic protein by oncostatin M in osteosarcoma cells require PKCdelta and STAT3. J Bone Miner Res 19: 1850–1861.

    Article  CAS  Google Scholar 

  • Debierre-Grockiego F . (2004). Anti-apoptotic role of STAT5 in haematopoietic cells and in the pathogenesis of malignancies. Apoptosis 9: 717–728.

    Article  CAS  Google Scholar 

  • Diller L, Kassel J, Nelson CE, Gryka MA, Litwak G, Gebhardt M et al. (1990). p53 functions as a cell cycle control protein in osteosarcomas. Mol Cell Biol 10: 5772–5781.

    Article  CAS  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC . (2000). Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20: 929–935.

    Article  CAS  Google Scholar 

  • Florenes VA, Maelandsmo GM, Forus A, Andreassen A, Myklebost O, Fodstad O . (1994). MDM2 gene amplification and transcript levels in human sarcomas: relationship to TP53 gene status. J Natl Cancer Inst 86: 1297–1302.

    Article  CAS  Google Scholar 

  • Fuchs B, Pritchard DJ . (2002). Etiology of osteosarcoma. Clin Orthop Relat Res 397: 40–52.

    Article  Google Scholar 

  • Grant SL, Begley CG . (1999). The oncostatin M signalling pathway: reversing the neoplastic phenotype? Mol Med Today 5: 406–412.

    Article  CAS  Google Scholar 

  • Haupt S, Berger M, Goldberg Z, Haupt Y . (2003). Apoptosis − the p53 network. J Cell Sci 116: 4077–4085.

    Article  CAS  Google Scholar 

  • Heath C, Cross NC . (2004). Critical role of STAT5 activation in transformation mediated by ZNF198-FGFR1. J Biol Chem 279: 6666–6673.

    Article  CAS  Google Scholar 

  • Jilka RL, Weinstein RS, Bellido T, Parfitt AM, Manolagas SC . (1998). Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13: 793–802.

    Article  CAS  Google Scholar 

  • Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E et al. (1999). Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. EMBO J 18: 2127–2136.

    Article  CAS  Google Scholar 

  • Kashkar H, Wiegmann K, Yazdanpanah B, Haubert D, Kronke M . (2005). Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J Biol Chem 280: 20804–20813.

    Article  CAS  Google Scholar 

  • Le Meur N, Lamirault G, Bihouee A, Steenman M, Bedrine-Ferran H, Teusan R et al. (2004). A dynamic, web-accessible resource to process raw microarray scan data into consolidated gene expression values: importance of replication. Nucleic Acids Res 32: 5349–5358.

    Article  CAS  Google Scholar 

  • Lengner CJ, Steinman HA, Gagnon J, Smith TW, Henderson JE, Kream BE et al. (2006). Osteoblast differentiation and skeletal development are regulated by Mdm2-p53 signaling. J Cell Biol 172: 909–921.

    Article  CAS  Google Scholar 

  • Nosaka T, Kawashima T, Misawa K, Ikuta K, Mui AL, Kitamura T . (1999). STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J 18: 4754–4765.

    Article  CAS  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  Google Scholar 

  • Qin XF, An DS, Chen IS, Baltimore D . (2003). Inhibiting HIV-1 infection in human T cells by lentiviral-mediated delivery of small interfering RNA against CCR5. Proc Natl Acad Sci USA 100: 183–188.

    Article  CAS  Google Scholar 

  • Sims NA, Clement-Lacroix P, Da Ponte F, Bouali Y, Binart N, Moriggl R et al. (2000). Bone homeostasis in growth hormone receptor-null mice is restored by IGF-I but independent of Stat5. J Clin Invest 106: 1095–1103.

    Article  CAS  Google Scholar 

  • Stephanou A, Brar BK, Knight RA, Latchman DS . (2000). Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ 7: 329–330.

    Article  CAS  Google Scholar 

  • Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S et al. (1998). The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001–5014.

    Article  CAS  Google Scholar 

  • Thornborrow EC, Manfredi JJ . (1999). One mechanism for cell type-specific regulation of the bax promoter by the tumor suppressor p53 is dictated by the p53 response element. J Biol Chem 274: 33747–33756.

    Article  CAS  Google Scholar 

  • Townsend PA, Scarabelli TM, Davidson SM, Knight RA, Latchman DS, Stephanou A . (2004). STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis. J Biol Chem 279: 5811–5820.

    Article  CAS  Google Scholar 

  • Trichet V, Benezech C, Dousset C, Gesnel MC, Bonneville M, Breathnach R . (2006). Complex interplay of activating and inhibitory signals received by Vgamma9Vdelta2 T cells revealed by target cell beta2-microglobulin knockdown. J Immunol 177: 6129–6136.

    Article  CAS  Google Scholar 

  • Wadayama B, Toguchida J, Shimizu T, Ishizaki K, Sasaki MS, Kotoura Y et al. (1994). Mutation spectrum of the retinoblastoma gene in osteosarcomas. Cancer Res 54: 3042–3048.

    CAS  Google Scholar 

  • Wang X, Kua HY, Hu Y, Guo K, Zeng Q, Wu Q et al. (2006). p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J Cell Biol 172: 115–125.

    Article  CAS  Google Scholar 

  • Wei Q . (2005). Pitx2a binds to human papillomavirus type 18 E6 protein and inhibits E6-mediated P53 degradation in HeLa cells. J Biol Chem 280: 37790–37797.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Isabelle Guisle-Marsollier (Inserm U533, Nantes, France) for her help on micro-arrays, and Caroline Colombeix (IFR26, Nantes, France) for the Confocal Microscopy. This work was supported by Inserm, the Ministère de la Recherche and La Ligue Contre le Cancer. CC is a recipient from of fellowship from the Région Pays de la loire.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Chipoy or F Blanchard.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipoy, C., Brounais, B., Trichet, V. et al. Sensitization of osteosarcoma cells to apoptosis by oncostatin M depends on STAT5 and p53. Oncogene 26, 6653–6664 (2007). https://doi.org/10.1038/sj.onc.1210492

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210492

Keywords

This article is cited by

Search

Quick links