Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multi-step lymphomagenesis deduced from DNA changes in thymic lymphomas and atrophic thymuses at various times after γ-irradiation

Abstract

Whole-body γ-irradiation to mice causes thymic atrophy where a population of precancerous cells with mutation can be found. Thus, clonal growth and DNA changes at Bcl11b, Ikaros, Pten, Notch1 and Myc were examined in not only thymic lymphomas but also in atrophic thymuses at various times after irradiation. Clonal expansion was detected from the distinct patterns of rearrangements at the TCRβ receptor locus in a fraction of atrophic thymuses at as early as 30 days after irradiation. This expansion may be in part owing to the rearranged TCRβ signaling because the transfer of bone marrow cells with the rearrangement and the wild-type locus into severe-combined immunodeficiency mice showed preferential growth of the rearranged thymocytes in atrophic thymus. Loss of heterozygosity (LOH) at Bcl11b and trisomy of Myc were found at high frequencies in both lymphomas and atrophic thymuses, and in contrast, LOH at Ikaros and Pten were rare in atrophic thymuses but prevalent in lymphomas. Notch1 activation was detected in lymphomas and in atrophic thymuses only at a late stage. Similar patterns of DNA changes were found in atrophic thymuses induced in Bcl11b+/− mice. These results suggest the order of genetic changes during lymphomagenesis, Bcl11b and Myc being at the early stage; whereas Ikaros, Pten and Notch1 at the late stage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abraham K, Levin S, Marth J, Forbush K, Perlmutter R . (1991). Thymic tumorigenesis induced by overexpression of p56lck. Proc Natl Acad Sci 88: 3977–3981.

    Article  CAS  Google Scholar 

  • Avram D, Fields A, Pretty K, Nevrivy DJ, Ishmael JE, Leid M . (2000). Isolation of a novel family of C2H2 zinc finger proteins implicated in transcriptional repression mediated by chicken ovalbumin upstream promoter transcription factor (COUP-TF) orphan nuclear receptors. J Biol Chem 275: 10315–10322.

    Article  CAS  Google Scholar 

  • Bartkova J, Horejsi Z, Koed K, Kramer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  Google Scholar 

  • Bernard OA, Busson-LeConiat M, Ballerini P . (2001). A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15: 1495–1504.

    Article  CAS  Google Scholar 

  • Bezrookove V, van Zelderen-Bhola LS . (2004). A novel t(6;14)(q25-q27;q32) in acute myelocytic leukemia involves the BCL11B gene. Cancer Genet Cytogenet 149: 72–76.

    Article  CAS  Google Scholar 

  • Brathwaite O, Bayona W, Newcomb EW . (1992). p53 mutations in C57BL/6J murine thymic lymphomas induced by γ-irradiation and N-methylnitrosourea. Cancer Res 52: 3791–3795.

    CAS  Google Scholar 

  • Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, Dos Santos NR et al. (2006). Notch activation is an early and critical event during T-cell leukemogenesis in ikaros-deficient mice. Mol Cell Biol 26: 209–220.

    Article  CAS  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    Article  CAS  Google Scholar 

  • Ellisen LW, Bird J, Sklar J . (1991). TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66: 649–661.

    Article  CAS  Google Scholar 

  • Fearon ER, Vogelstein BA . (1990). Genetic model for colorectal tumorigenesis. Cell 61: 759–767.

    Article  CAS  Google Scholar 

  • Freeman DJ, Li AG, Wei G, Li H, Kertesz N, Lesche R et al. (2003). PTEN tumor suppressor regulates p53 protein levels and activity through phosphatase-dependent and –independent mechanisms. Cancer Cell 3: 117–130.

    Article  CAS  Google Scholar 

  • Georgopoulos K, Moore DD, Derfler B . (1992). Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 258: 808–812.

    Article  CAS  Google Scholar 

  • Girard L, Hanna Z, Beaulieu N, Hoemann CD, Simard C, Kozak CA et al. (1996). Frequent provirus insertional mutagenesis of Notch1 in thymomas of MMTVD/myc transgenic mice suggests a collaboration of c-myc and Notch1 for oncogenesis. Genes & Dev 10: 1930–1944.

    Article  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    Article  CAS  Google Scholar 

  • Graham M, Adams JM, Cory S . (1985). Murine T lymphomas with retroviral inserts in the chromosomal 15 locus for plasmacytoma variant translocations. Nature 314: 740–743.

    Article  CAS  Google Scholar 

  • Gray DH, Ueno T, Chidgey AP . (2005). Controlling the thymic microenvironment. Curr Opin Imnunol 17: 137–143.

    Article  CAS  Google Scholar 

  • Hahn WC, Weinberg RA . (2002). Modelling the molecular circuitry of cancer. Nat Rev Cancer 2: 331–341.

    Article  CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hoemann CD, Beaulieu N, Girard L, Rebai N, Jolicoeur P . (2000). Two distinct Notch1 mutant alleles are involved in the induction of T-cell leukemia in c-myc transgenic mice. Mol Cell Biol 20: 3831–3842.

    Article  CAS  Google Scholar 

  • Inoue J, Kanefuji T, Okazuka K, Watanabe H, Mishima Y, Kominami R . (2006). Expression of TCRαβ partly rescues developmental arrest and apoptosis of αβT cells in Bcl11b−/− mice. J Immunology 176: 5871–5879.

    Article  CAS  Google Scholar 

  • Itoyama T, Chaganti RS, Yamada Y . (2001). Cytogenetic analysis and clinical significance in adult T-cell leukemia/lymphoma: a study of 50 cases from the human T-cell leukemia virus type-1 endemic area, Nagasaki. Blood 97: 3612–3620.

    Article  CAS  Google Scholar 

  • Kabra NH, Kang C, Hsing LC, Zhang J, Winoto A . (2001). T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc Natl Acad Sci USA 98: 6307–6312.

    Article  CAS  Google Scholar 

  • Kakinuma S, Nishimura M, Sasanuma S, Mita K, Suzuki G, Katsura Y et al. (2002). Spectrum of Znfn1a1 (Ikaros) inactivation and its association with loss of heterozygosity in radiogenic T-cell lymphomas in susceptible B6C3F1 mice. Radiat Res 157: 331–340.

    Article  CAS  Google Scholar 

  • Kamimura K, Ohi H, Kubota T, Okazuka K, Yoshikai Y, Wakabayashi Y et al. (2007). Haploinsufficiency of Bcl11b for suppression of lymphomagenesis and thymocyte development. Biochem Biophys Res Commun (in the press).

  • Kaplan HS . (1964). The role of radiation in experimental leukemogenesis. Natl Cancer Inst Monogr 14: 207–217.

    CAS  Google Scholar 

  • Kawamoto H, Ohmura K, Fujimoto S, Lu M, Ikawa T, Katsura Y . (2003). Extensive proliferation of T cell lineage-restricted progenitors in the thymus: an essential process for clonal expression of diverse T cell receptor beta chains. Eur J Immunol 33: 606–615.

    Article  CAS  Google Scholar 

  • Kinzler KW, Vogelstein B . (1996). Lessons from hereditary colorectal cancer. Cell 87: 159–170.

    Article  CAS  Google Scholar 

  • Klein G . (1979). Lymphoma development in mice and humans: diversity of initiation is followed by convergent cytogenetic evolution. Proc Nat Acad Sci USA 76: 2442–2446.

    Article  CAS  Google Scholar 

  • Kominami R, Niwa O . (2006). Radiation carcinogenesis in mouse thymic lymphomas. Cancer Sci 97: 575–581.

    Article  CAS  Google Scholar 

  • Lin YW, Nichols RA, Letterio JJ, Aplan PD . (2006). Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 107: 2540–2543.

    Article  CAS  Google Scholar 

  • Ludwig FC, Elashoff RM, Wellington JS . (1968). Murine radiation leukemia and the preleukemic state. Lab Invest 19: 240–251.

    Google Scholar 

  • McArthur GA, Foley KP, Fero ML, Walkley CR, Deans AJ, Roberts JM et al. (2002). MAD1 and p27(KIP1) cooperate to promote terminal differentiation of granulocytes and to inhibit Myc expression and cyclin E-CDK2 activity. Mol Cell Biol 22: 3014–3023.

    Article  CAS  Google Scholar 

  • MacLeod RA, Nagel S, Kaufmann M, Janssen JW, Drexler HG . (2003). Activation of HOX11L2 by juxtaposition with 3′-BCL11B in an acute lymphoblastic leukemia cell line (HPB-ALL) with t(5;14)(q35;q32.2). Genes Chromosomes Cancer 37: 84–91.

    Article  CAS  Google Scholar 

  • Mayo LD, Dixon JE, Durden DL, Tonks NK, Donner DB . (2002). PTEN protects p53 from Mdm2 and sensitizes cancer cells to chemotherapy. J Biol Chem 277: 5484–5489.

    Article  CAS  Google Scholar 

  • Mao HJ, Wu D, Perez-Losada J . (2003). Genetic interactions between Pten and p53 in radiation-induced lymphoma development. Oncogene 2: 8379–8385.

    Article  Google Scholar 

  • McMorrow LE, Newcomb EW, Pellicer A . (1988). Identification of a specific marker chromosome early in tumor development in gamma-irradiated C57BL/6J mice. Leukemia 2: 115–119.

    CAS  Google Scholar 

  • Mombaerts P, Anderson S, Perlmutter R, Mak T, Tonegawa S . (1994). An activated lck transgene promotes thymocyte development in RAG-1 mutant mice. Immunity 1: 261–267.

    Article  CAS  Google Scholar 

  • Murphy KM, Heimberger AB, Loh DY . (1990). Induction by antigen of intrathymic apoptosis of CD4+CD8+TCRlo thymocytes in vivo. Science 250: 1720–1723.

    Article  CAS  Google Scholar 

  • Muto M, Kubo E, Sado T . (1987). Development of prelymphoma cells committed to thymic lymphomas during radiation-induced thymic lymphomagenesis in B10 mice. Cancer Res 47: 3469–3472.

    CAS  Google Scholar 

  • Nagel S, Kaufmann M, Drexler HG, MacLeod RA . (2003). The cardiac homeobox gene NKX2-5 is deregulated by juxtaposition with BCL11B in pediatric T-ALL cell lines via a novel t(5;14)(q35.1;q32.2). Cancer Res 63: 5329–5334.

    CAS  Google Scholar 

  • Newcomb EW, Steinberg JJ, Pellicer A . (1988). ras oncogenes and phenotypic staging in N-methylnitrosoures- and γ-irradiation-induced thymic lymphomas in C57BL/6J mice. Cancer Res 48: 5514–5521.

    CAS  Google Scholar 

  • Newton K, Harris AW, Strasser A . (2000). FADD/MORT1 regulates the pre-TCR checkpoint and can function as a tumour suppressor. EMBO J 19: 931.

    Article  CAS  Google Scholar 

  • Okano H, Saito Y, Miyazawa T . (1999). Homozygous deletions and point mutations of the Ikaros gene in γ-ray-induced mouse thymic lymphomas. Oncogene 18: 6677–6683.

    Article  CAS  Google Scholar 

  • O’Neil J, Calvo J, McKenna K, Krishnamoorthy V, Aster JC, Bassing CH et al. (2006). Activating Notch1 mutations in mouse models of T-ALL. Blood 107: 781–785.

    Article  Google Scholar 

  • Przybylski GK, Dik WA, Wanzeck J, Grabarczyk P, Majunke S, Martin-Subero JI et al. (2005). Disruption of the BCL11B gene through inv(14)(q11.2q32.31) results in the expression of BCL11B-TRDC fusion transcripts and is associated with the absence of wild-type BCL11B transcripts in T-ALL. Leukemia 19: 201–208.

    Article  CAS  Google Scholar 

  • Ruiz A, Jiang J, Kempski H . (2004). Overexpression of the Ikaros 6 isoform is restricted to t(4;11) acute lymphoblastic leukaemia in children and infants and has a role in B-cell survival. Br J Haematol 125: 31–37.

    Article  CAS  Google Scholar 

  • Sado T, Kamisaku H, Kubo E . (1991). Bone marrow-thymus interactions during thymic lymphomagenesis induced by fractionated radiation exposure in B10 mice: analysis using bone marrow transplantation between Thy 1 congenic mice. J Radiat Res 32: 168–180.

    Article  Google Scholar 

  • Shinbo T, Matsuki A, Matsumoto Y, Kosugi S, Takahashi H, Niwa O et al. (1999). Allelic loss mapping and physical delineation of a region harboring a putative thymic lymphoma gene on chromosome 12. Oncogene 12: 4131–4136.

    Article  Google Scholar 

  • Shinkai YS, Koyasu K, Nakayama KM, Murphy DY, Loh EL, Reinherz FW . (1993). Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259: 822.

    Article  CAS  Google Scholar 

  • Sicinska E, Aifantis I, Le Cam L, Swat W, Borowski C, Yu Q et al. (2003). Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4: 451–461.

    Article  CAS  Google Scholar 

  • Sun L, Heerema N, Crotty L . (1999). Expression of dominant-negative and mutant isoforms of the antileukemic transcription factor Ikaros in infant acute lymphoblastic leukemia. Proc Nat Acad Sci USA 96: 680–685.

    Article  CAS  Google Scholar 

  • Tsuji H, Ishii-Ohba H, Katsube T, Ukai H, Aizawa S, Doi M et al. (2004). Involvement of illegitimate V(D)J recombination or microhomology-mediated nonhomologous end-joining in the formation of intragenic deletions of the Notch1 gene in mouse thymic lymphomas. Cancer Res 64: 8882–8890.

    Article  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW . (1993). The multi-step nature of cancer. Trends Genet 9: 138–141.

    Article  CAS  Google Scholar 

  • Wakabayashi Y, Inoue J, Takahashi Y, Matsuki A, Kosugi-Okano H, Shinbo T et al. (2003a). Homozygous deletions and point mutations of the Rit1/Bcl11b gene in γ-ray induced mouse thymic lymphomas. Biochem Biophy Res Comm 301: 598–603.

    Article  CAS  Google Scholar 

  • Wakabayashi Y, Watanabe H, Inoue J, Takeda N, Sakata J, Mishima Y et al. (2003b). Bcl11b is required for differentiation and survival of αβ T lymphocytes. Nat Immunol 4: 533–539.

    Article  CAS  Google Scholar 

  • Weng AP, Ferrando AA, Lee W, Morris JP, Silverman LB, Sanchez-Irizarry C et al. (2004). Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306: 269–271.

    Article  CAS  Google Scholar 

  • Winandy S, Wu P, Georgopoulos K . (1995). A dominant mutation in the Ikaros gene leads to rapid development of leukemia and lymphoma. Cell 83: 289–299.

    Article  CAS  Google Scholar 

  • Yagi T, Hibi S, Takanashi M . (2002). High frequency of Ikaros isoform 6 expression in acute myelomonocytic and monocytic leukemias: implications for up-regulation of the antiapoptotic protein Bcl-xL in leukemogenesis. Blood 99: 1350–1355.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank O Niwa and A Naito for helpful comments on the paper and PCR analysis, respectively. This work was supported by Grants-in-Aid for Cancer Research from the Ministries of Education, Science, Art and Sports, and was also supported by Grants-in-Aid for Cancer Research (13-2) from the Ministry of Health, Labor and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Kominami.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohi, H., Mishima, Y., Kamimura, K. et al. Multi-step lymphomagenesis deduced from DNA changes in thymic lymphomas and atrophic thymuses at various times after γ-irradiation. Oncogene 26, 5280–5289 (2007). https://doi.org/10.1038/sj.onc.1210325

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210325

Keywords

Search

Quick links