Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Negative regulation of Pim-1 protein kinase levels by the B56β subunit of PP2A

Abstract

The Pim protein kinases are serine threonine protein kinases that regulate important cellular signaling pathway molecules, and enhance the ability of c-Myc to induce lymphomas. We demonstrate that a cascade of events controls the cellular levels of Pim. We find that overexpression of the protein phosphatase (PP) 2A catalytic subunit decreases the activity and protein levels of Pim-1. This effect is reversed by the application of okadaic acid, an inhibitor of PP2A, and is blocked by SV40 small T antigen that is known to disrupt B subunit binding to PP2A A and C subunits. Pim-1 can coimmunoprecipitate with the PP2A regulatory B subunit, B56β, but not B56α, γ, δ, ɛ or B55α. Using short hairpin RNA targeted at B56β, we demonstrate that decreasing the level of B56β increases the half-life of Pim-1 from 0.7 to 2.8 h, and decreases the ubiquitinylation level of Pim-1. We also find that Pin1, a prolyl-isomerase, is capable of binding Pim-1 and leads to a decrease in the protein level of Pim-1. On the basis of these observations, we hypothesize that phosphorylated Pim-1 binds Pin1 allowing the interaction of PP2A through B56β. Dephosphorylation of Pim-1 then allows for ubiquitinylation and protein degradation of Pim-1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Adam M, Pogacic V, Bendit M, Chappuis R, Nawijn MC, Duyster J et al. (2006). Targeting PIM kinases impairs survival of hematopoietic cells transformed by kinase inhibitor-sensitive and kinase inhibitor-resistant forms of Fms-like tyrosine kinase 3 and BCR/ABL. Cancer Res 66: 3828–3835.

    Article  CAS  PubMed  Google Scholar 

  • Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . (2004). Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43–49.

    Article  CAS  PubMed  Google Scholar 

  • Amaravadi R, Thompson CB . (2005). The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 115: 2618–2624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnold HK, Sears RC . (2006). Protein phosphatase 2A regulatory subunit B56alpha associates with c-myc and negatively regulates c-myc accumulation. Mol Cell Biol 26: 2832–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo JD, Hahn WC . (2005). Involvement of PP2A in viral and cellular transformation. Oncogene 24: 7746–7755.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann M, Moroy T . (2005). The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37: 726–730.

    Article  CAS  PubMed  Google Scholar 

  • Boudreau RT, Hoskin DW . (2005). The use of okadaic acid to elucidate the intracellular role(s) of protein phosphatase 2A: lessons from the mast cell model system. Int Immunopharmacol 5: 1507–1518.

    Article  CAS  PubMed  Google Scholar 

  • Campaner S, Kaldis P, Izraeli S, Kirsch IR . (2005). Sil phosphorylation in a Pin1 binding domain affects the duration of the spindle checkpoint. Mol Cell Biol 25: 6660–6672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC . (2004). Identification of specific PP2A complexes involved in human cell transformation. Cancer Cell 5: 127–136.

    Article  CAS  PubMed  Google Scholar 

  • Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . (2005). Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 3: 443–451.

    Article  CAS  PubMed  Google Scholar 

  • Chen XP, Losman JA, Cowan S, Donahue E, Fay S, Vuong BQ et al. (2002). Pim serine/threonine kinases regulate the stability of Socs-1 protein. Proc Natl Acad Sci USA 99: 2175–2180.

    Article  CAS  PubMed  Google Scholar 

  • Cibull TL, Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR et al. (2006). Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol 59: 285–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W et al. (1984). Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. (2003). Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  • Fox CJ, Hammerman PS, Cinalli RM, Master SR, Chodosh LA, Thompson CB . (2003). The serine/threonine kinase Pim-2 is a transcriptionally regulated apoptotic inhibitor. Genes Dev 17: 1841–1854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerman PS, Fox CJ, Cinalli RM, Xu A, Wagner JD, Lindsten T et al. (2004). Lymphocyte transformation by Pim-2 is dependent on nuclear factor-kappaB activation. Cancer Res 64: 8341–8348.

    Article  CAS  PubMed  Google Scholar 

  • Ionov Y, Le X, Tunquist BJ, Sweetenham J, Sachs T, Ryder J et al (2003). Pim-1 protein kinase is nuclear in Burkitt's lymphoma: nuclear localization is necessary for its biologic effects. Anticancer Res 23: 167–178.

    CAS  PubMed  Google Scholar 

  • Janssens V, Goris J . (2001). Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 353: 417–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssens V, Goris J, Van Hoof C . (2005). PP2A: the expected tumor suppressor. Curr Opin Genet Dev 15: 34–41.

    Article  CAS  PubMed  Google Scholar 

  • Kim KT, Baird K, Ahn JY, Meltzer P, Lilly M, Levis M et al. (2005). Pim-1 is up-regulated by constitutively activated FLT3 and plays a role in FLT3-mediated cell survival. Blood 105: 1759–1767.

    Article  CAS  PubMed  Google Scholar 

  • Kim KT, Levis M, Small D . (2006). Constitutively activated FLT3 phosphorylates BAD partially through pim-1. Br J Haematol 134: 500–509.

    Article  CAS  PubMed  Google Scholar 

  • Lechward K, Awotunde OS, Swiatek W, Muszynska G . (2001). Protein phosphatase 2A: variety of forms and diversity of functions. Acta Biochim Pol 48: 921–933.

    CAS  PubMed  Google Scholar 

  • Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB . (2003). Protein phosphatase 2A regulates the stability of Pim protein kinases. J Biol Chem 278: 4800–4805.

    Article  CAS  PubMed  Google Scholar 

  • Macdonald A, Campbell DG, Toth R, McLauchlan H, Hastie CJ, Arthur JS . (2006). Pim kinases phosphorylate multiple sites on Bad and promote 14-3-3 binding and dissociation from Bcl-XL. BMC Cell Biol 7: 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCright B, Rivers AM, Audlin S, Virshup DM . (1996). The B56 family of protein phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem 271: 22081–22089.

    Article  CAS  PubMed  Google Scholar 

  • Mikkers H, Nawijn M, Allen J, Brouwers C, Verhoeven E, Jonkers J et al. (2004). Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 24: 6104–6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monje P, Hernandez-Losa J, Lyons RJ, Castellone MD, Gutkind JS . (2005). Regulation of the transcriptional activity of c-Fos by ERK A novel role for the prolyl isomerase PIN1. J Biol Chem 280: 35081–35084.

    Article  CAS  PubMed  Google Scholar 

  • Qian KC, Studts J, Wang L, Barringer K, Kronkaitis A, Peng C et al. (2005a). Expression, purification, crystallization and preliminary crystallographic analysis of human Pim-1 kinase. Acta Crystallograph Sect F Struct Biol Cryst Commun 61: 96–99.

    Article  CAS  Google Scholar 

  • Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C et al. (2005b). Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280: 6130–6137.

    Article  CAS  PubMed  Google Scholar 

  • Richardson PG, Mitsiades C . (2005). Bortezomib: proteasome inhibition as an effective anticancer therapy. Future Oncol 1: 161–171.

    Article  CAS  PubMed  Google Scholar 

  • Ruediger R, Pham HT, Walter G . (2001a). Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene. Oncogene 20: 10–15.

    Article  CAS  PubMed  Google Scholar 

  • Ruediger R, Pham HT, Walter G . (2001b). Alterations in protein phosphatase 2A subunit interaction in human carcinomas of the lung and colon with mutations in the A beta subunit gene. Oncogene 20: 1892–1899.

    Article  CAS  PubMed  Google Scholar 

  • Ruvolo PP, Clark W, Mumby M, Gao F, May WS . (2002). A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277: 22847–22852.

    Article  CAS  PubMed  Google Scholar 

  • Sears RC . (2004). The life cycle of C-myc: from synthesis to degradation. Cell Cycle 3: 1133–1137.

    Article  CAS  PubMed  Google Scholar 

  • Selten G, Cuypers HT, Berns A . (1985). Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4: 1793–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS . (2005). Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 3: 170–181.

    Article  PubMed  Google Scholar 

  • Shirogane T, Fukada T, Muller JM, Shima DT, Hibi M, Hirano T . (1999). Synergistic roles for Pim-1 and c-Myc in STAT3-mediated cell cycle progression and antiapoptosis. Immunity 11: 709–719.

    Article  CAS  PubMed  Google Scholar 

  • Stukenberg PT, Kirschner MW . (2001). Pin1 acts catalytically to promote a conformational change in Cdc25. Mol Cell 7: 1071–1083.

    Article  CAS  PubMed  Google Scholar 

  • Treier M SL, Bohmann D . (1994). Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78: 787–798.

    Article  PubMed  Google Scholar 

  • Ugi S, Imamura T, Maegawa H, Egawa K, Yoshizaki T, Shi K et al. (2004). Protein phosphatase 2A negatively regulates insulin's metabolic signaling pathway by inhibiting Akt (protein kinase B) activity in 3T3-L1 adipocytes. Mol Cell Biol 24: 8778–8789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hoof C, Goris J . (2004). PP2A fulfills its promises as tumor suppressor: which subunits are important? Cancer Cell 5: 105–106.

    Article  CAS  PubMed  Google Scholar 

  • Van Kanegan MJ, Adams DG, Wadzinski BE, Strack S . (2005). Distinct protein phosphatase 2A heterotrimers modulate growth factor signaling to extracellular signal-regulated kinases and Akt. J Biol Chem 280: 36029–36036.

    Article  CAS  PubMed  Google Scholar 

  • Van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz et al. (1989). Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . (1991). Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 11: 1176–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L et al. (2001). Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2: 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhang T, Tang H, Zhang S, Liu M, Ren D et al. (2005). Overexpression of PIM-1 is a potential biomarker in prostate carcinoma. J Surg Oncol 92: 326–330.

    Article  CAS  PubMed  Google Scholar 

  • Xu YX, Hirose Y, Zhou XZ, Lu KP, Manley JL . (2003). Pin1 modulates the structure and function of human RNA polymerase II. Genes Dev 17: 2765–2776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh E, Cunningham M, Arnold H, Chasse D, Monteith T, Ivaldi G et al. (2004). A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat Cell Biol 6: 308–318.

    Article  CAS  PubMed  Google Scholar 

  • Zhou XZ, Kops O, Werner A, Lu PJ, Shen M, Stoller G et al. (2000). Pin1-dependent prolyl isomerization regulates dephosphorylation of Cdc25C and tau proteins. Mol Cell 6: 873–883.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Virshup (University of Utah), William C Hahn (Harvard Medical School), Ilan R Kirsch (Research Oncology, Amgen, Seattle, WA, USA), Mathias Treier (European Molecular Biology Laboratory, Heidelberg, Germany) and Yusuf A Hannun (Medical University of South Carolina) for providing plasmids, Craig B Thompson (Abramson Family Cancer Research Institute, Philadelphia, PA) for providing Pim-1,2 knockout mice, Changmin Chen for growing the mouse bone marrow cells and WeiWei Chen for making the Flag-Pim-1 constructs. This work was supported by DOD Grant W81XWH-05-1-0126 to Kraft, DOD Grant W81XWH-04-1-0887 to Lilly, NIH training grant 5-T32-GM08617 and OHSU TL Tartar Trust Research Fellowship AMEDG0063 to Arnold, and NIH Grants R01-CA100855 and K01-CA086957 to Sears.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A S Kraft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Arnold, H., Lilly, M. et al. Negative regulation of Pim-1 protein kinase levels by the B56β subunit of PP2A. Oncogene 26, 5145–5153 (2007). https://doi.org/10.1038/sj.onc.1210323

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210323

Keywords

This article is cited by

Search

Quick links