Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The protein kinase C-η isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway

Abstract

Glioblastoma multiforme (GBM) is the highest grade of astrocytoma. GBM pathogenesis has been linked to receptor tyrosine kinases and kinases further down signal-transduction pathways – in particular, members of the protein kinase C (PKC) family. The expression and activity of various PKC isoforms are increased in malignant astrocytomas, but not in non-neoplastic astrocytes. This suggests that PKC activity contributes to tumor progression. The level of PKC-η expressed correlates with the degree of phorbol-12-myristate-13-acetate (PMA)-induced proliferation of two glioblastoma cell lines, U-1242 MG and U-251 MG. Normally, U-1242 cells do not express PKC-η, and PMA inhibits their proliferation. Conversely, PMA increases proliferation of U-1242 cells that are stably transfected with PKC-η (U-1242-PKC-η). PMA treatment also stimulates proliferation of U-251 cells, which express PKC-η. Here, we determined that extracellular signal-regulated kinase (ERK) and Elk-1 are downstream targets of PKC-η. Elk-1-mediated transcriptional activity correlates with the PKC-η-mediated mitogenic response. Pretreatment of U-1242-PKC-η cells with inhibitors of PKC or MAPK/ERK kinase (MEK) (bisindolyl maleimide (BIM) or U0126, respectively) blocked both PMA-induced Elk-1 transcriptional activity and PMA-stimulated proliferation. An overexpressed dominant-negative PKC-η reduced the mitogenic response in U-251 cells, as did reduction of Elk-1 by small interfering RNA. Taken together, these results strongly suggest that PKC-η-mediated glioblastoma proliferation involves MEK/mitogen-activated protein (MAP) kinase phosphorylation, activation of ERK and subsequently of Elk-1. Elk-1 target genes involved in GBM proliferative responses have yet to be identified.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Aeder SE, Martin PM, Soh JW, Hussaini IM . (2004). PKC-eta mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene 23: 9062–9069.

    Article  CAS  Google Scholar 

  • Amos S, Martin PM, Polar GA, Parsons SJ, Hussaini IM . (2005). Phorbol 12-myristate 13-acetate induces epidermal growth factor receptor transactivation via protein kinase C delta/c-Src pathways in glioblastoma cells. J Biol Chem 280: 7729–7738.

    Article  CAS  Google Scholar 

  • Baltuch GH, Dooley NP, Villemure JG, Yong VW . (1995). Protein kinase C and growth regulation of malignant gliomas. Can J Neurol Sci 22: 264–271.

    Article  CAS  Google Scholar 

  • Baltuch GH, Yong VW . (1996). Signal transduction for proliferation of glioma cells in vitro occurs predominantly through a protein kinase C-mediated pathway. Brain Res 710: 143–149.

    Article  CAS  Google Scholar 

  • Bigner DD, Bigner SH, Ponten J, Westermark B, Mahaley MS, Ruoslahti E et al. (1981). Heterogeneity of genotypic and phenotypic characteristics of fifteen permanent cell lines derived from human gliomas. J Neuropathol Exp Neurol 40: 201–229.

    Article  CAS  Google Scholar 

  • Bongcam-Rudloff E, Nister M, Betsholtz C, Wang JL, Stenman G, Huebner K et al. (1991). Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer Res 51: 1553–1560.

    CAS  PubMed  Google Scholar 

  • Couldwell WT, Antel JP, Apuzzo ML, Yong VW . (1990). Inhibition of growth of established human glioma cell lines by modulators of the protein kinase-C system. J Neurosurg 73: 594–600.

    Article  CAS  Google Scholar 

  • Dooley NP, Baltuch GH, Groome N, Villemure JG, Yong VW . (1998). Apoptosis is induced in glioma cells by antisense oligonucleotides to protein kinase C alpha and is enhanced by cycloheximide. Neuroreport 9: 1727–1733.

    Article  CAS  Google Scholar 

  • Eferl R, Wagner EF . (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3: 859–868.

    Article  CAS  Google Scholar 

  • Eller JL, Longo SL, Kyle MM, Bassano D, Hicklin DJ, Canute GW . (2005). Anti-epidermal growth factor receptor monoclonal antibody cetuximab augments radiation effects in glioblastoma multiforme in vitro and in vivo. Neurosurgery 56: 155–162; discussion 162.

    Article  Google Scholar 

  • Frodin M, Gammeltoft S . (1999). Role and regulation of 90kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151: 65–77.

    Article  CAS  Google Scholar 

  • Gill G, Ptashne M . (1988). Negative effect of the transcriptional activator GAL4. Nature 334: 721–724.

    Article  CAS  Google Scholar 

  • Hess J, Angel P, Schorpp-Kistner M . (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci 117: 5965–5973.

    Article  CAS  Google Scholar 

  • Houillier C, Lejeune J, Benouaich-Amiel A, Laigle-Donadey F, Criniere E, Mokhtari K et al. (2006). Prognostic impact of molecular markers in a series of 220 primary glioblastomas. Cancer 106: 2218–2223.

    Article  CAS  Google Scholar 

  • Hussaini IM, Brown MD, Karns LR, Carpenter J, Redpath GT, Gonias SL et al. (1999). Epidermal growth factor differentially regulates low density lipoprotein receptor-related protein gene expression in neoplastic and fetal human astrocytes. Glia 25: 71–84.

    Article  CAS  Google Scholar 

  • Hussaini IM, Karns LR, Vinton G, Carpenter JE, Redpath GT, Sando JJ et al. (2000). Phorbol 12-myristate 13-acetate induces protein kinase C-eta-specific proliferative response in astrocytic tumor cells. J Biol Chem 275: 22348–22354.

    Article  CAS  Google Scholar 

  • Karin M, Smeal T . (1992). Control of transcription factors by signal transduction pathways: the beginning of the end. Trends Biochem Sci 17: 418–422.

    Article  CAS  Google Scholar 

  • Kleiheus P, Caveness WK . (1997). Pathology and Genetics Tumours of the Nervous System. International Agency for Research on Cancer; World Health Organization: Lyons.

    Google Scholar 

  • Kleihues P, Ohgaki H . (1999). Primary and secondary glioblastomas: from concept to clinical diagnosis. Neuro-oncology 1: 44–51.

    Article  CAS  Google Scholar 

  • Lopez G, Schaufele F, Webb P, Holloway JM, Baxter JD, Kushner PJ . (1993). Positive and negative modulation of Jun action by thyroid hormone receptor at a unique AP1 site. 13: 3042–3049.

  • Milde-Langosch K . (2005). The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer 41: 2449–2461.

    Article  CAS  Google Scholar 

  • Mischel PS, Cloughesy TF . (2003). Targeted molecular therapy of GBM. Brain Pathol 13: 52–61.

    Article  Google Scholar 

  • Mishima K, Ohno S, Shitara N, Yamaoka K, Suzuki K . (1994). Opposite effects of the overexpression of protein kinase C gamma and delta on the growth properties of human glioma cell line U251 MG. Biochem Biophys Res Commun 201: 363–372.

    Article  CAS  Google Scholar 

  • Nozaki M, Tada M, Kobayashi H, Zhang CL, Sawamura Y, Abe H et al. (1999). Roles of the functional loss of p53 and other genes in astrocytoma tumorigenesis and progression. Neuro-oncology 1: 124–137.

    Article  CAS  Google Scholar 

  • Pollack IF, Randall MS, Kristofik MP, Kelly RH, Selker RG, Vertosick Jr FT . (1991). Response of low-passage human malignant gliomas in vitro to stimulation and selective inhibition of growth factor-mediated pathways. J Neurosurg 75: 284–293.

    Article  CAS  Google Scholar 

  • Schonwasser DC, Marais RM, Marshall CJ, Parker PJ . (1998a). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18: 790–798.

    Article  CAS  Google Scholar 

  • Schonwasser DC, Marais RM, Marshall CJ, Parker PJ . (1998b). Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Mol Cell Biol 18: 790–798.

    Article  CAS  Google Scholar 

  • Sharif TR, Sharif M . (1999). A high throughput system for the evaluation of protein kinase C inhibitors based on Elk1 transcriptional activation in human astrocytoma cells. Int J Oncol 14: 327–335.

    CAS  PubMed  Google Scholar 

  • Shawver LK, Slamon D, Ullrich A . (2002). Smart drugs: tyrosine kinase inhibitors in cancer therapy. Cancer Cell 1: 117–123.

    Article  CAS  Google Scholar 

  • Shen L, Glazer RI . (1998). Induction of apoptosis in glioblastoma cells by inhibition of protein kinase C and its association with the rapid accumulation of p53 and induction of the insulin-like growth factor-1-binding protein-3. Biochem Pharmacol 55: 1711–1719.

    Article  CAS  Google Scholar 

  • Szaniawska B, Maternicka K, Kowalczyk D, Miloszewska J, Janik P . (1996). The pleiotropic effect of TPA on in vitro invasion/migration of glioma and melanoma cell lines. Cancer Lett 107: 205–209.

    Article  CAS  Google Scholar 

  • Tootle TL, Rebay I . (2005). Post-translational modifications influence transcription factor activity: a view from the ETS superfamily. Bioessays 27: 285–298.

    Article  CAS  Google Scholar 

  • Turner R, Tjian R . (1989). Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos–cJun heterodimers. Science 243: 1689–1694.

    Article  CAS  Google Scholar 

  • Uhrbom L, Nister M, Westermark B . (1997). Induction of senescence in human malignant glioma cells by p16INK4A. Oncogene 15: 505–514.

    Article  CAS  Google Scholar 

  • Uht RM, Anderson CM, Webb P, Kushner PJ . (1997). Transcriptional activities of estrogen and glucocorticoid receptors are functionally integtrated at the AP-1 response element. Endocrinology 138: 2900–2908.

    Article  CAS  Google Scholar 

  • US Cancer Statistics Working Group (2005). US Department of Health and Human Services. Centers for Disease Control and Prevention and National Cancer Institute: Atlanta,pp 50.

  • Webb P, Nguyen P, Valentine C, Lopez GN, Kwok GR, McInerney E et al. (1999). The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol Endocrinol 13: 1672–1685.

    Article  CAS  Google Scholar 

  • Yang SH, Jaffray E, Hay RT, Sharrocks AD . (2003). Dynamic interplay of the SUMO and ERK pathways in regulating Elk-1 transcriptional activity. Mol Cell 12: 63–74.

    Article  CAS  Google Scholar 

  • Yordy JS, Muise-Helmericks RC . (2000). Signal transduction and the Ets family of transcription factors. Oncogene 19: 6503–6513.

    Article  CAS  Google Scholar 

  • Young MR, Yang HS, Colburn NH . (2003). Promising molecular targets for cancer prevention: AP-1, NF-kappa B and Pdcd4. Trends Mol Med 9: 36–41.

    Article  CAS  Google Scholar 

  • Zellner A, Fetell MR, Bruce JN, De Vivo DC, O'Driscoll KR . (1998). Disparity in expression of protein kinase C alpha in human glioma versus glioma-derived primary cell lines: therapeutic implications. Clin Cancer Res 4: 1797–1802.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Teresa Olsen for excellent editorial assistance. The work was supported by R01 Grants NS35122 and CA90851 (IMH) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R M Uht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uht, R., Amos, S., Martin, P. et al. The protein kinase C-η isoform induces proliferation in glioblastoma cell lines through an ERK/Elk-1 pathway. Oncogene 26, 2885–2893 (2007). https://doi.org/10.1038/sj.onc.1210090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210090

Keywords

This article is cited by

Search

Quick links