Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53

Abstract

Cancers harboring dominant-negative p53 mutations are often aggressive and difficult to treat. Direct attempts to restore wild-type p53 function have produced little clinical benefit. We investigated whether targeting a p53-target gene could induce certain tumor-suppressor characteristics. We found that inhibition of stathmin, a microtubule regulator that can be transcriptionally repressed by wild-type p53, restored certain wild-type functions to cancer cells with mutant p53. Silencing of stathmin by small interfering RNA (siRNA) in mutant p53 cell lines lowered expression to that observed following activation of wild-type p53 by DNA damage in wild-type p53 cell lines. siRNA-induced repression of stathmin decreased cell proliferation, viability and clonogenicity in mutant p53 cell lines. Furthermore, knockdown of stathmin partially restored cell-cycle regulation and activation of apoptosis. Therefore, targeting stathmin, a gene product that is overexpressed in the presence of mutant p53, may represent a novel approach to treating cancers with aberrant p53 function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Ahn J, Murphy M, Kratowicz S, Wang A, Levine AJ, George DL . (1999). Down-regulation of the stathmin/Op18 and FKBP25 genes following p53 induction. Oncogene 18: 5954–5958.

    Article  CAS  Google Scholar 

  • Alaiya AA, Franzen B, Fujioka K, Moberger B, Schedvins K, Silfversvard C et al. (1997). Phenotypic analysis of ovarian carcinoma: polypeptide expression in benign, borderline and malignant tumors. Int J Cancer 73: 678–683.

    Article  CAS  Google Scholar 

  • Alli E, Bash-Babula J, Yang JM, Hait WN . (2002). Effect of stathmin on the sensitivity to antimicrotubule drugs in human breast cancer. Cancer Res 62: 6864–6869.

    CAS  PubMed  Google Scholar 

  • Bieche I, Lachkar S, Becette V, Cifuentes-Diaz C, Sobel A, Lidereau R et al. (1998). Overexpression of the stathmin gene in a subset of human breast cancer. Br J Cancer 78: 701–709.

    Article  CAS  Google Scholar 

  • Bieche I, Manceau V, Curmi PA, Laurendeau I, Lachkar S, Leroy K et al. (2003). Quantitative RT–PCR reveals a ubiquitous but preferentially neural expression of the KIS gene in rat and human. Brain Res Mol Brain Res 114: 55–64.

    Article  CAS  Google Scholar 

  • Bossi G, Mazzaro G, Porrello A, Crescenzi M, Soddu S, Sacchi A . (2004). Wild-type p53 gene transfer is not detrimental to normal cells in vivo: implications for tumor gene therapy. Oncogene 23: 418–425.

    Article  CAS  Google Scholar 

  • Brattsand G . (2000). Correlation of oncoprotein 18/stathmin expression in human breast cancer with established prognostic factors. Br J Cancer 83: 311–318.

    Article  CAS  Google Scholar 

  • Bullock AN, Fersht AR . (2001). Rescuing the function of mutant p53. Nat Rev Cancer 1: 68–76.

    Article  CAS  Google Scholar 

  • Bykov VJ, Issaeva N, Shilov A, Hultcrantz M, Pugacheva E, Chumakov P et al. (2002). Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med 8: 282–288.

    Article  CAS  Google Scholar 

  • Castedo M, Perfettini JL, Roumier T, Andreau K, Medema R, Kroemer G . (2004). Cell death by mitotic catastrophe: a molecular definition. Oncogene 23: 2825–2837.

    Article  CAS  Google Scholar 

  • Chang CL, Hora N, Huberman N, Hinderer R, Kukuruga M, Hanash SM . (2001). Oncoprotein 18 levels and phosphorylation mediate megakaryocyte polyploidization in human erythroleukemia cells. Proteomics 1: 1415–1423.

    Article  CAS  Google Scholar 

  • Curmi PA, Nogues C, Lachkar S, Carelle N, Gonthier MP, Sobel A et al. (2000). Overexpression of stathmin in breast carcinomas points out to highly proliferative tumours. Br J Cancer 82: 142–150.

    Article  CAS  Google Scholar 

  • Faille A, De Cremoux P, Extra JM, Linares G, Espie M, Bourstyn E et al. (1994). p53 mutations and overexpression in locally advanced breast cancers. Br J Cancer 69: 1145–1150.

    Article  CAS  Google Scholar 

  • Fei P, El-Deiry WS . (2003). P53 and radiation responses. Oncogene 22: 5774–5783.

    Article  CAS  Google Scholar 

  • Foster BA, Coffey HA, Morin MJ, Rastinejad F . (1999). Pharmacological rescue of mutant p53 conformation and function. Science 286: 2507–2510.

    Article  CAS  Google Scholar 

  • Friedrich B, Gronberg H, Landstrom M, Gullberg M, Bergh A . (1995). Differentiation-stage specific expression of oncoprotein 18 in human and rat prostatic adenocarcinoma. Prostate 27: 102–109.

    Article  CAS  Google Scholar 

  • Fujiwara T, Cai DW, Georges RN, Mukhopadhyay T, Grimm EA, Roth JA . (1994). Therapeutic effect of a retroviral wild-type p53 expression vector in an orthotopic lung cancer model. J Natl Cancer Inst 86: 1458–1462.

    Article  CAS  Google Scholar 

  • Hanash SM, Strahler JR, Kuick R, Chu EH, Nichols D . (1988). Identification of a polypeptide associated with the malignant phenotype in acute leukemia. J Biol Chem 263: 12813–12815.

    CAS  PubMed  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • Haupt S, Berger M, Goldberg Z, Haupt Y . (2003). Apoptosis – the p53 network. J Cell Sci 116: 4077–4085.

    Article  CAS  Google Scholar 

  • Hollstein M, Sidransky D, Vogelstein B, Harris CC . (1991). p53 mutations in human cancers. Science 253: 49–53.

    Article  CAS  Google Scholar 

  • Hupp TR, Lane DP . (1994). Allosteric activation of latent p53 tetramers. Curr Biol 4: 865–875.

    Article  CAS  Google Scholar 

  • Johnsen JI, Aurelio ON, Kwaja Z, Jorgensen GE, Pellegata NS, Plattner R et al. (2000). p53-mediated negative regulation of stathmin/Op18 expression is associated with G(2)/M cell-cycle arrest. Int J Cancer 88: 685–691.

    Article  CAS  Google Scholar 

  • Levine AJ . (1997). p53, the cellular gatekeeper for growth and division. Cell 88: 323–331.

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD . (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  • Margolis RL, Lohez OD, Andreassen PR . (2003). G1 tetraploidy checkpoint and the suppression of tumorigenesis. J Cell Biochem 88: 673–683.

    Article  CAS  Google Scholar 

  • Meek DW . (2000). The role of p53 in the response to mitotic spindle damage. Pathol Biol (Paris) 48: 246–254.

    CAS  Google Scholar 

  • Murphy M, Ahn J, Walker KK, Hoffman WH, Evans RM, Levine AJ et al. (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev 13: 2490–2501.

    Article  CAS  Google Scholar 

  • Oesterreich S, Fuqua SA . (1999). Tumor suppressor genes in breast cancer. Endocr Relat Cancer 6: 405–419.

    Article  CAS  Google Scholar 

  • Pietenpol JA, Stewart ZA . (2002). Cell cycle checkpoint signaling: cell cycle arrest versus apoptosis. Toxicology 181–182: 475–481.

    Article  Google Scholar 

  • Polager S, Ginsberg D . (2003). E2F mediates sustained G2 arrest and down-regulation of Stathmin and AIM-1 expression in response to genotoxic stress. J Biol Chem 278: 1443–1449.

    Article  CAS  Google Scholar 

  • Price DK, Ball JR, Bahrani-Mostafavi Z, Vachris JC, Kaufman JS, Naumann RW et al. (2000). The phosphoprotein Op18/stathmin is differentially expressed in ovarian cancer. Cancer Invest 18: 722–730.

    Article  CAS  Google Scholar 

  • Sionov RV, Haupt Y . (1999). The cellular response to p53: the decision between life and death. Oncogene 18: 6145–6157.

    Article  CAS  Google Scholar 

  • Sobel A, Tashjian Jr AH . (1983). Distinct patterns of cytoplasmic protein phosphorylation related to regulation of synthesis and release of prolactin by GH cells. J Biol Chem 258: 10312–10324.

    CAS  PubMed  Google Scholar 

  • Taylor WR, Agarwal ML, Agarwal A, Stacey DW, Stark GR . (1999). p53 inhibits entry into mitosis when DNA synthesis is blocked. Oncogene 18: 283–295.

    Article  CAS  Google Scholar 

  • Taylor WR, Stark GR . (2001). Regulation of the G2/M transition by p53. Oncogene 20: 1803–1815.

    Article  CAS  Google Scholar 

  • Thompson DA, Belinsky G, Chang TH, Jones DL, Schlegel R, Munger K . (1997). The human papillomavirus-16 E6 oncoprotein decreases the vigilance of mitotic checkpoints. Oncogene 15: 3025–3035.

    Article  CAS  Google Scholar 

  • Vecil GG, Lang FF . (2003). Clinical trials of adenoviruses in brain tumors: a review of Ad-p53 and oncolytic adenoviruses. J Neurooncol 65: 237–246.

    Article  Google Scholar 

  • Vogel C, Kienitz A, Hofmann I, Muller R, Bastians H . (2004). Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy. Oncogene 23: 6845–6853.

    Article  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW . (2004). Cancer genes and the pathways they control. Nat Med 10: 789–799.

    Article  CAS  Google Scholar 

  • Vogelstein B, Lane D, Levine AJ . (2000). Surfing the p53 network. Nature 408: 307–310.

    Article  CAS  Google Scholar 

  • Wallace-Brodeur RR, Lowe SW . (1999). Clinical implications of p53 mutations. Cell Mol Life Sci 55: 64–75.

    Article  CAS  Google Scholar 

  • Zhou J, Giannakakou P . (2005). Targeting microtubules for cancer chemotherapy. Curr Med Chem Anti-Canc Agents 5: 65–71.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US Public Health Service NCI CA 78695 and CA 72720.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J-M Yang or W N Hait.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alli, E., Yang, JM. & Hait, W. Silencing of stathmin induces tumor-suppressor function in breast cancer cell lines harboring mutant p53. Oncogene 26, 1003–1012 (2007). https://doi.org/10.1038/sj.onc.1209864

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209864

Keywords

This article is cited by

Search

Quick links