Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells

Abstract

The neuroendocrine (NE) cells represent the third cell population in the normal prostate. Results of several clinical studies strongly indicate that the NE cell population is greatly increased in prostate carcinomas during androgen ablation therapy that correlates with hormone-refractory growth and poor prognosis. However, the mechanism of NE cell enrichment in prostate carcinoma remains an enigma. We investigated the molecular mechanism by which androgen-sensitive C-33 LNCaP human prostate cancer cells become NE-like cells in an androgen-reduced environment, mimicking clinical phenomenon. In the androgen-depleted condition, androgen-sensitive C-33 LNCaP cells gradually acquired the NE-like morphology and expressed an increased level of neuron-specific enolase (NSE), a classical marker of neuronal cells. Several NE-like subclone cells were established. Biochemical characterizations of these subclone cells showed that receptor-type protein-tyrosine phosphatase alpha (RPTPα) is elevated and ERK is constitutively activated, several folds higher than that in parental cells. In androgen-depleted condition, PD98059, an MEK inhibitor, could efficiently block not only the activation of ERK, but also the acquisition of the NE-like morphology and the elevation of NSE in C-33 LNCaP cells. In RPTPα cDNA-transfected C-33 LNCaP cells, ERK was activated and NSE was elevated. In those cells in the presence of PD98059, the ERK activation and NSE elevation were abolished, following a dose–response fashion. Additionally, in constitutively active MEK mutant cDNA-transfected C-33 LNCaP cells, ERK was activated and NSE level was elevated, and cells obtained the NE-like phenotype. Our data collectively indicated that RPTPα signaling via ERK is involved in the NE transdifferentiation of androgen-sensitive C-33 LNCaP human prostate cancer cells in the androgen-depleted condition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 1

Similar content being viewed by others

Richard J. Rebello, Christoph Oing, … Robert G. Bristow

Abbreviations

NE:

neuroendocrine

NSE:

neuron-specific enolase

cAMP:

adenosine 3′,5′-cyclic monophosphate

db-cAMP:

dibutyrate cAMP

PKA:

protein kinase A

PI3K:

phosphatidylinositol 3-kinase

IL:

interleukin

ERK:

extracellular signal-regulated kinase

MEK:

ERK kinase

MAPK:

mitogen-activated protein kinase

MKP:

ERK/MAPK phosphatase

NGF:

nerve growth factor

HA:

hemagglutinin

FBS:

fetal bovine serum

SR-FBS:

steroid-reduced FBS

ECL:

enhanced chemiluminescence

GFP:

green fluorescent protein

PTP:

protein tyrosine phosphatase

RPTPα:

receptor protein tyrosine phosphatase alpha

DHT:

5α-dihydrotestosterone

Ab:

antibody

References

  • Abrahamsson PA . (1999a). Prostate, 39, 135–148.

  • Abrahamsson PA . (1999b). Endocr. Relat. Cancer, 6, 503–519.

  • Abrahamsson PA and Lilja H . (1989). Prostate, 14, 71–81.

  • Almagro UA, Tieu TM, Remeniuk E, Kueck B and Strumpf K . (1986). Arch. Pathol. Lab. Med., 110, 916–919.

  • Bang YJ, Pirnia F, Fang WG, Kang WK, Sartor O, Whitesell L, Ha MJ, Tsokos M, Sheahan MD and Nguyen P . (1994). Proc. Natl. Acad. Sci. USA, 91, 5330–5334.

  • Bennett AM and Tonks NK . (1997). Science, 278, 1288–1291.

  • Bologna M, Festuccia C, Muzi P, Biordi L and Ciomei M . (1989). Cancer, 63, 1714–1720.

  • Bonkhoff H . (1998). Prostate Suppl., 8, 18–22.

  • Bonkhoff H and Remberger K . (1996). Prostate, 28, 98–106.

  • Bonkhoff H, Wernert N, Dhom G and Remberger K . (1991). Prostate, 19, 91–98.

  • Burchardt T, Burchardt M, Chen MW, Cao Y, de_la_Taille A, Shabsigh A, Hayek O, Dorai T and Buttyan R . (1999). J. Urol., 162, 1800–1805.

  • Chen T, Cho RW, Stork PJ and Weber MJ . (1999). Cancer Res., 59, 213–218.

  • Cockett AT, di Sant'Agnese PA, Gopinath P, Schoen SR and Abrahamsson PA . (1993). Urology, 42, 512–519.

  • Cohen RJ, Glezerson G and Haffejee Z . (1991). Br. J. Urol., 68, 258–262.

  • Cowley S, Paterson H, Kemp P and Marshall CJ . (1994). Cell, 77, 841–852.

  • Cox ME, Deeble PD, Bissonette EA and Parsons SJ . (2000). J. Biol.Chem., 275, 13812–13818.

  • Cox ME, Deeble PD, Lakhani S and Parsons SJ . (1999). Cancer Res., 59, 3821–3830.

  • Deeble PD, Murphy DJ, Parsons SJ and Cox ME . (2001). Mol. Cell. Biol., 21, 8471–8482.

  • den Hertog J and Hunter T . (1996). EMBO J., 15, 3016–3027.

  • den Hertog J, Pals CE, Peppelenbosch MP, Tertoolen LG, de Laat SW and Kruijer W . (1993). EMBO J., 12, 3789–3798.

  • den Hertog J, Tracy S and Hunter T . (1994). EMBO J., 13, 3020–3032.

  • di Sant'Agnese PA . (1998a). Prostate Suppl., 8, 74–79.

  • di Sant'Agnese PA . (1998b). Urology, 51, 121–124.

  • di Sant'Agnese PA and Cockett AT . (1996). Cancer, 78, 357–361.

  • Diaz M, Abdul M and Hoosein N . (1998). Prostate Suppl., 8, 32–36.

  • Ferrell Jr JE . (1996). Curr. Top. Dev. Biol., 33, 1–60.

  • Fronsdal K, Engedal N and Saatcioglu F . (2000). Prostate, 43, 111–117.

  • Fukuda M, Gotoh Y, Tachibana T, Dell K, Hattori S, Yoneda Y and Nishida E . (1995). Oncogene, 11, 239–244.

  • Gioeli D, Mandell JW, Petroni GR, Frierson Jr HF and Weber MJ . (1999). Cancer Res., 59, 279–284.

  • Gkonos PJ, Krongrad A and Roos BA . (1995). Urol. Res., 23, 81–87.

  • Gredinger E, Gerber AN, Tamir Y, Tapscott SJ and Bengal E . (1998). J. Biol. Chem., 273, 10436–10444.

  • Greenlee RT, Hill-Harmon MB, Murray T and Thun M . (2001). CA Cancer J. Clin., 51, 15–36.

  • Hu X, Moscinski LC, Valkov NI, Fisher AB, Hill BJ and Zuckerman KS . (2000). Cell Growth Differ., 11, 191–200.

  • Ihara S, Nakajima K, Fukada T, Hibi M, Nagata S, Hirano T and Fukui Y . (1997). EMBO J., 16, 5345–5352.

  • Iwamura M, Abrahamsson PA, Foss KA, Wu G, Cockett AT and Deftos LJ . (1994). Urology, 43, 675–679.

  • Iwasaki S, Hattori A, Sato M, Tsujimoto M and Kohno M . (1996). J. Biol. Chem., 271, 17360–17365.

  • Jacob KK, Sap J and Stanley FM . (1998). J. Biol. Chem., 273, 4800–4809.

  • Jiang G, den Hertog J, Su J, Noel J, Sap J and Hunter T . (1999). Nature, 401, 606–610.

  • Jongsma J, Oomen MH, Noordzij MA, Van Weerden WM, Martens GJ, van der Kwast TH, Schroder FH and van Steenbrugge GJ . (2000). Cancer Res., 60, 741–748.

  • Kim J, Adam RM and Freeman MR . (2002). Cancer Res, 62, 1549–1554.

  • Lammers R, Moller NP and Ullrich A . (1997). FEBS Lett., 404, 37–40.

  • Lee LF, Guan J, Qiu Y and Kung HJ . (2001). Mol. Cell. Biol., 21, 8385–8397.

  • Lee MS, Igawa T, Yuan TC, Zhang XQ, Lin FF and Lin MF . (2003). Oncogene, 22, 781–796.

  • Lewis TS, Shapiro PS and Ahn NG . (1998). Adv. Cancer Res., 74, 49–139.

  • Lin MF and Clinton GM . (1986). Biochem. J., 235, 351–357.

  • Lin MF, DaVolio J and Garcia-Arenas R . (1992). Cancer Res., 52, 4600–4607.

  • Lin MF, Lee MS, Garcia-Arenas R and Lin FF . (2000). Cell. Biol. Int., 24, 681–689.

  • Lin MF, Lee MS, Zhou XW, Andressen JC, Meng TC, Johansson SL, West WW, Taylor RJ, Anderson JR and Lin FF . (2001). J. Urol., 166, 1943–1950.

  • Lin MF, Meng TC, Rao PS, Chang C, Schonthal AH and Lin FF . (1998). J. Biol. Chem., 273, 5939–5947.

  • Marshall CJ . (1995). Cell, 80, 179–185.

  • Meng TC and Lin MF . (1998). J. Biol. Chem., 273, 22096–22104.

  • Meng TC, Lee MS and Lin MF . (2000). Oncogene, 19, 2664–2677.

  • Mori S, Murakami-Mori K and Bonavida B . (1999). Biochem. Biophys. Res. Commun., 257, 609–614.

  • Noordzij MA, van Weerden WM, de Ridder CM, van der Kwast TH, Schroder FH and van Steenbrugge GJ . (1996). Am. J. Pathol., 149, 859–871.

  • Pang L, Sawada T, Decker SJ and Saltiel AR . (1995). J. Biol. Chem., 270, 13585–13588.

  • Price DT, Rocca GD, Guo C, Ballo MS, Schwinn DA and Luttrell LM . (1999). J. Urol., 162, 1537–1542.

  • Qiu Y, Robinson D, Pretlow TG and Kung HJ . (1998). Proc. Natl. Acad. Sci. USA, 95, 3644–3649.

  • Racke FK, Lewandowska K, Goueli S and Goldfarb AN . (1997). J. Biol. Chem., 272, 23366–23370.

  • Ruokonen M, Shan JD, Hedberg P, Patrikainen L and Vihko P . (1996). Biochem. Biophys. Res. Commun., 218, 794–796.

  • Schaeffer HJ and Weber MJ . (1999). Mol. Cell. Biol., 19, 2435–2444.

  • Seethalakshmi L, Mitra SP, Dobner PR, Menon M and Carraway RE . (1997). Prostate, 31, 183–192.

  • Seger R and Krebs EG . (1995). FASEB J., 9, 726–735.

  • Seuwen K and Pouyssegur J . (1990). Biochem. Pharmacol., 39, 985–990.

  • Shah GV, Rayford W, Noble MJ, Austenfeld M, Weigel J, Vamos S and Mebust WK . (1994). Endocrinology, 134, 596–602.

  • Shen R, Dorai T, Szaboles M, Katz AE, Olsson CA and Buttyan R . (1997). Urol. Oncol., 3, 67–75.

  • Su J, Muranjan M and Sap J . (1999). Curr. Biol., 9, 505–511.

  • Sundaram M and Han M . (1996). BioEssays, 18, 473–480.

  • Tarle M, Frkovic-Grazio S, Kraljic I and Kovacic K . (1994). Prostate, 24, 143–148.

  • Tetu B, Ro JY, Ayala AG, Johnson DE, Logothetis CJ and Ordonez NG . (1987). Cancer, 59, 1803–1809.

  • Theodorescu D, Broder SR, Boyd JC, Mills SE and Frierson Jr HF . (1997). Cancer, 80, 2109–2119.

  • Treisman R . (1996). Curr. Opin. Cell. Biol., 8, 205–215.

  • Tsai W, Morielli AD, Cachero TG and Peralta EG . (1999). EMBO J., 18, 109–118.

  • Umbhauer M, Marshall CJ, Mason CS, Old RW and Smith JC . (1995). Nature, 376, 58–62.

  • van Inzen WG, Peppelenbosch MP, van den Brand MW, Tertoolen LG and de Laat S . (1996). Brain Res. Dev. Brain Res., 91, 304–307.

  • Vossler MR, Yao H, York RD, Pan MG, Rim CS and Stork PJ . (1997). Cell, 89, 73–82.

  • Whalen AM, Galasinski SC, Shapiro PS, Nahreini TS and Ahn NG . (1997). Mol. Cell. Biol., 17, 1947–1958.

  • Xia Z, Dickens M, Raingeaud J, Davis RJ and Greenberg ME . (1995). Science, 270, 1326–1331.

  • Yao H, York RD, Misra-Press A, Carr DW and Stork PJ . (1998). J. Biol. Chem., 273, 8240–8247.

  • Zelivianski S, Comeau D and Lin MF . (1998). Biochem. Biophys. Res. Commun., 245, 108–112.

  • Zelivianski S, Dean J, Madhavan D, Lin FF and Lin MF . (2000). Mol. Cell. Biochem., 208, 11–18.

  • Zelivianski S, Verni M, Moore C, Kondrikov D, Taylor R and Lin MF . (2001). Biochim. Biophys. Acta., 1539, 28–43.

  • Zeng L, D'Alessandri L, Kalousek MB, Vaughan L and Pallen CJ . (1999). J. Cell. Biol., 147, 707–714.

  • Zhang XQ, Lee MS, Zelivianski S and Lin MF . (2001). J. Biol. Chem., 276, 2544–2550.

  • Zheng XM and Pallen CJ . (1994). J. Biol. Chem., 269, 23302–23309.

  • Zheng XM, Resnick RJ and Shalloway D . (2000). EMBO J., 19, 964–978.

  • Zi X and Agarwal R . (1999). Proc. Natl. Acad. Sci. USA, 96, 7490–7495.

Download references

Acknowledgements

We thank Dr Tony Hunter at the Salk Institute for the murine RPTPα cDNA encoding the wild-type and the mutant proteins and its Ab, and Dr Parmender P Mehta at UNMC for providing Alexa 594-conjugated goat anti-mouse IgG. We also thank the fluorescent microscope core facility at the Department of Surgery, the confocal microscope core facility at the Department of Biochemistry and Molecular Biology, and the lab colleagues for their helpful suggestions and discussions. This work was supported in part by NCI CA72274 and CA88184 from the National Institutes of Health, Nebraska Department of Health/Eppley Cancer Center LB595, and the UNMC College of Medicine Research Grant Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Fong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XQ., Kondrikov, D., Yuan, TC. et al. Receptor protein tyrosine phosphatase alpha signaling is involved in androgen depletion-induced neuroendocrine differentiation of androgen-sensitive LNCaP human prostate cancer cells. Oncogene 22, 6704–6716 (2003). https://doi.org/10.1038/sj.onc.1206764

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206764

Keywords

This article is cited by

Search

Quick links