Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Activated Raf inhibits avian myogenesis through a MAPK-dependent mechanism

Abstract

Chronic overexpression of the oncogenic form of Ras is a potent inhibitor of skeletal myogenesis. However, the intracellular signaling pathways that mediate the repressive actions of Ras on myogenic differentiation have yet to be identified. We examined the role of Raf-mediated signaling as a modulator of avian myogenesis. Raf overexpression elicited pronounced effects on both myoblasts and mature myocytes. Most notably, the embryonic chick myoblasts overexpressing a constitutively active form of Raf (RCAS-Raf CAAX or RCAS-Raf BXB) fail to form the large multinucleated myofibers characteristic of myogenic cultures. While residual myofibers were apparent in the RCAS-Raf BXB and RCAS-Raf CAAX infected cultures, these fibers had an atrophic phenotype. The altered morphology is not a result of reinitiation of the myonuclei cell cycle nor is it due to apoptosis. Furthermore, the mononucleated myoblasts misexpressing Raf BXB are differentiation-defective due to overt MAPK activity. Supplementation of the culture media with the MAPK kinase (MEK) inhibitor, PD98059, caused a reversal of the phenotype and allowed the formation of multinucleated myofibers at levels comparable to controls. Our results indicate that the Raf/MEK/MAPK axis is intact in chick myoblasts and that persistent activation of this signaling cascade is inhibitory to myogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alema S and Tato F. . 1994 Semin. Cancer Biol. 5: 147–156.

  • Avruch J, Zhang X and Kyriakis JM. . 1994 Trends Biochem. Sci. 19: 279–283.

  • Bennett AM and Tonks N. . 1997 Science 278: 1288–1291.

  • Bruder JT, Heidecker G and Rapp UR. . 1992 Genes Dev. 6: 545–556.

  • Coolican SA, Samuel DS, Ewton DZ, McWade FJ and Florini JR. . 1997 J. Biol. Chem. 272: 6653–6662.

  • DeAngelis L, Borghi S, Melchionna R, Berghella L, Baccarani-Contri M, Parisse F, Ferrari S and Cossu G. . 1998 Proc. Natl. Acad. Sci. USA 95: 12358–12363.

  • Denhardt DT. . 1996 Biochem. J. 318: 729–747.

  • Downward J. . 1998 Curr. Opin. Gen. Dev. 8: 49–54.

  • Duckworth BC and Cantley LC. . 1997 J. Biol. Chem. 272: 27665–27670.

  • Florini JR, Ewton DZ and Magri KA. . 1991 Annu. Rev. Physiol. 53: 201–216.

  • Fukuda M, Gotoh Y, Tachibana T, Dell K, Hattori S, Yoneda Y and Nishida E. . 1995 Oncogene 11: 239–244.

  • Gredinger E, Gerber AN, Tamir Y, Tapscott SJ and Bengal E. . 1998 J. Biol. Chem. 273: 10436–10444.

  • Hardy S, Kong Y and Konieczny SF. . 1993 Mol. Cell Biol. 10: 5943–5956.

  • Hermann M, Lorenz H-M, Voll R, Grunke M, Woith W and Kalden JR. . 1994 Nucl. Acid. Res. 22: 5506–5507.

  • Joneson T and Bar-Sagi D. . 1997 J. Mol. Med. 75: 587–595.

  • Kauffman-Zeh A, Rodriguez-Viciana P, Ulrich E, Gilbert C, Coffer P, Downward J and Evan G. . 1997 Nature 385: 544–548.

  • Kaliman P, Canicio J, Shepherd PR, Beeton CA, Testar X, Palacin M and Zorzano A. . 1998 Mol. Endocrinol. 12: 66–77.

  • Kong YF, Johnson SE, Taparowsky EJ and Konieczny SF. . 1995 Mol. Cell. Biol. 15: 5202–5213.

  • Konieczny SF, Drobes BL, Menke SL and Taparowsky EJ. . 1989 Oncogene 4: 473–481.

  • Lassar AB, Thayer MJ, Overell RW and Weintraub H. . 1989 Cell 58: 659–667.

  • Lassar AB and Munsterberg A. . 1996 Curr. Op. Neurobiol. 6: 57–63.

  • Li L, Zhou J, James G, Heller-Harrison R, Czech MP and Olson EN. . 1992 Cell 71: 1181–1194.

  • Ludolph DC and Koniecnzy SF. . 1995 FASEB J. 9: 1595–1604.

  • Marshall CJ. . 1995 Cell 80: 179–185.

  • Molkentin JD and Olson EN. . 1996 Curr. Opin. Gen. Dev. 6: 445–453.

  • Olson EN, Spizz G and Tainsky MA. . 1987 Mol. Cell. Biol. 7: 2104–2111.

  • Olson EN. . 1992 Dev. Biol. 154: 261–272.

  • Petropoulos SJ and Hughes SH. . 1991 J. Virol. 65: 3728–3737.

  • Ramocki MB, Johnson SE, White MA, Ashendel CL, Konieczny SF and Taparowsky EJ. . 1997 Mol. Cell. Biol. 17: 3547–3555.

  • Takano H, Momuro I, Oka T, Shiojima I, Hiroi Y, Mizuno T and Yazaki Y. . 1998 Mol. Cell. Biol. 18: 1580–1589.

  • Turner DL and Weintraub H. . 1994 Genes Dev. 8: 1434–1447.

  • Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K and Ohno S. . 1996 J. Biol. Chem. 271: 23512–23519.

  • Vaidya TB, Weyman CM, Teegarden D, Ashendel CL and Taparowsky EJ. . 1991 J. Cell Biol. 114: 809–820.

  • White MA, Nicolette C, Minden M, Polverino A, VanAelst L, Karin M and Wigler MJ. . 1995 Cell 80: 533–541.

  • Xu R-H, Dong Z, Maeno M, Kim J, Suzuki A, Ueno N, Sredi D, Colburn NH and Kung HF. . 1996 Proc. Natl. Acad. Sci. USA 93: 834–838.

Download references

Acknowledgements

This work was supported by grants to SE Johnson from the United States Department of Agriculture (NRICGP 9803668) and the American Heart Association-Pennsylvania Affiliate (BP8419P).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorman, C., Johnson, S. Activated Raf inhibits avian myogenesis through a MAPK-dependent mechanism. Oncogene 18, 5167–5176 (1999). https://doi.org/10.1038/sj.onc.1202907

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202907

Keywords

This article is cited by

Search

Quick links