Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The neurodevelopmental model of schizophrenia: update 2005

A Corrigendum to this article was published on 26 May 2005

Abstract

Neurodevelopmental models of schizophrenia that identify longitudinal precursors of illness have been of great heuristic importance focusing most etiologic research over the past two decades. These models have varied considerably with respect to specificity and timing of hypothesized genetic and environmental ‘hits’, but have largely focused on insults to prenatal brain development. With heritability around 80%, nongenetic factors impairing development must also be part of the model, and any model must also account for the wide range of age of onset. In recent years, longitudinal brain imaging studies of both early and adult (to distinguish from late ie elderly) onset populations indicate that progressive brain changes are more dynamic than previously thought, with gray matter volume loss particularly striking in adolescence and appearing to be an exaggeration of the normal developmental pattern. This supports an extended time period of abnormal neurodevelopment in schizophrenia in addition to earlier ‘lesions’. Many subtle cognitive, motor, and behavioral deviations are seen years before illness onset, and these are more prominent in early onset cases. Moreover, schizophrenia susceptibility genes and chromosomal abnormalities, particularly as examined for early onset populations (ie GAD1, 22q11DS), are associated with premorbid neurodevelopmental abnormalities. Several candidate genes for schizophrenia (eg dysbindin) are associated with lower cognitive abilities in both schizophrenic and other pediatric populations more generally. Postmortem human brain and developmental animal studies document multiple and diverse effects of developmental genes (including schizophrenia susceptibility genes), at sequential stages of brain development. These may underlie the broad array of premorbid cognitive and behavioral abnormalities seen in schizophrenia, and neurodevelopmental disorders more generally. Increased specificity for the most relevant environmental risk factors such as exposure to prenatal infection, and their interaction with susceptibility genes and/or action through phase-specific altered gene expression now both strengthen and modify the neurodevelopmental theory of schizophrenia.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Cardno AG, Marshall EJ, Coid B, Macdonald AM, Ribchester TR, Davies NJ et al. Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. Arch Gen Psychiatry 1999; 56: 162–168.

    CAS  PubMed  Google Scholar 

  2. Singh SM, McDonald P, Murphy B, O’Reilly R . Incidental neurodevelopmental episodes in the etiology of schizophrenia: an expanded model involving epigenetics and development. Clin Genet 2004; 65: 435–440.

    Article  CAS  PubMed  Google Scholar 

  3. Waddington JL, Torrey EF, Crow TJ, Hirsch SR . Schizophrenia, neurodevelopment, and disease. The Fifth Biannual Winter Workshop on Schizophrenia, Badgastein, Austria, January 28 to February 3, 1990. Arch Gen Psychiatry 1991; 48: 271–273.

    Article  CAS  PubMed  Google Scholar 

  4. Weinberger D . Implications of normal brain development for the pathogenesis of schizophrena. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  PubMed  Google Scholar 

  5. Gilmore JH, van Tol J, Kliewer MA, Silva SG, Cohen SB, Hertzberg BS et al. Mild ventriculomegaly detected in utero with ultrasound: clinical associations and implications for schizophrenia. Schizophr Res 1998; 33: 133–140.

    Article  CAS  PubMed  Google Scholar 

  6. Feinberg I . Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res 1982; 17: 319–334.

    Article  PubMed  Google Scholar 

  7. Mathalon DH, Rapoport JL, Davis KL, Krystal JH . Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry. Arch Gen Psychiatry 2003; 60: 846–848, author reply 848–849.

    Article  PubMed  Google Scholar 

  8. Jakob H, Beckmann H . Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65: 303–326.

    Article  CAS  PubMed  Google Scholar 

  9. Akbarian S, Bunney Jr WE, Potkin SG, Wigal SB, Hagman JO, Sandman CA et al. Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 1993; 50: 169–177.

    Article  CAS  PubMed  Google Scholar 

  10. Selemon LD, Goldman-Rakic PS . The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol Psychiatry 1999; 45: 17–25.

    Article  CAS  PubMed  Google Scholar 

  11. Susser E, Opler M . Prenatal events that influence schizophrenia. In: Harvey PD (ed). Schizophrenia and Early Life. Oxford University Press: London.

  12. Cannon M, Jones PB, Murray RM . Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 2002; 159: 1080–1092.

    Article  PubMed  Google Scholar 

  13. Geddes JR, Lawrie SM . Obstetric complications and schizophrenia: a meta-analysis. Br J Psychiatry 1995; 167: 786–793.

    Article  CAS  PubMed  Google Scholar 

  14. Geddes JR, Verdoux H, Takei N, Lawrie SM, Bovet P, Eagles JM et al. Schizophrenia and complications of pregnancy and labor: an individual patient data meta-analysis. Schizophr Bull 1999; 25: 413–423.

    Article  CAS  PubMed  Google Scholar 

  15. Cannon TD, Rosso IM, Hollister JM, Bearden CE, Sanchez LE, Hadley T . A prospective cohort study of genetic and perinatal influences in the etiology of schizophrenia. Schizophr Bull 2000; 26: 351–366.

    Article  CAS  PubMed  Google Scholar 

  16. Rosso IM, Cannon TD, Huttunen T, Huttunen MO, Lonnqvist J, Gasperoni TL . Obstetric risk factors for early-onset schizophrenia in a Finnish birth cohort. Am J Psychiatry 2000; 157: 801–807.

    Article  CAS  PubMed  Google Scholar 

  17. Hultman CM, Sparen P, Takei N, Murray RM, Cnattingius S . Prenatal and perinatal risk factors for schizophrenia, affective psychosis, and reactive psychosis of early onset: case–control study. BMJ 1999; 318: 421–426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Matsumoto H, Takei N, Saito F, Kachi K, Mori N . The association between obstetric complications and childhood-onset schizophrenia: a replication study. Psychol Med 2001; 31: 907–914.

    Article  CAS  PubMed  Google Scholar 

  19. Lewis SW, Murray RM . Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. J Psychiatr Res 1987; 21: 413–421.

    Article  CAS  PubMed  Google Scholar 

  20. Nicolson R, Malaspina D, Giedd JN, Hamburger S, Lenane M, Bedwell J et al. Obstetrical complications and childhood-onset schizophrenia. Am J Psychiatry 1999; 156: 1650–1652.

    Article  CAS  PubMed  Google Scholar 

  21. Ordonez AE, Bobb A, Greenstein D, Baker N, Sporn A, Lenane M et al. Lack of evidence for elevated obstetric complications in childhood onset schizophrenia. Biol Psychiatry, in press.

  22. Susser ES, Lin SP . Schizophrenia after prenatal exposure to the Dutch Hunger Winter of 1944–1945. Arch Gen Psychiatry 1992; 49: 983–988.

    Article  CAS  PubMed  Google Scholar 

  23. Brown AS, Susser ES, Lin SP, Neugebauer R, Gorman JM . Increased risk of affective disorders in males after second trimester prenatal exposure to the Dutch hunger winter of 1944–45. Br J Psychiatry 1995; 166: 601–606.

    Article  CAS  PubMed  Google Scholar 

  24. Joseph KS, Kramer MS . Review of the evidence on fetal and early childhood antecedents of adult chronic disease. Epidemiol Rev 1996; 18: 158–174.

    Article  CAS  PubMed  Google Scholar 

  25. Brown AS, Susser ES . In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 2002; 8: 51–57.

    Article  PubMed  Google Scholar 

  26. Brown AS, Begg MD, Gravenstein S, Schaefer CA, Wyatt RJ, Bresnahan M et al. Serologic evidence of prenatal influenza in the etiology of schizophrenia. Arch Gen Psychiatry 2004; 61: 774–780.

    Article  PubMed  Google Scholar 

  27. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH . Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun 2001; 15: 411–420.

    Article  CAS  PubMed  Google Scholar 

  28. Kuchna I . Quantitative studies of human newborns’ hippocampal pyramidal cells after perinatal hypoxia. Folia Neuropathol 1994; 32: 9–16.

    CAS  PubMed  Google Scholar 

  29. Gilmore JH, Fredrik Jarskog L, Vadlamudi S, Lauder JM . Prenatal Infection and Risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004; 29: 1221–1229.

    CAS  PubMed  Google Scholar 

  30. Watanabe Y, Hashimoto S, Kakita A, Takahashi H, Ko J, Mizuno M et al. Neonatal impact of leukemia inhibitory factor on neurobehavioral development in rats. Neurosci Res 2004; 48: 345–353.

    Article  CAS  PubMed  Google Scholar 

  31. Tohmi M, Tsuda N, Watanabe Y, Kakita A, Nawa H . Perinatal inflammatory cytokine challenge results in distinct neurobehavioral alterations in rats: implication in psychiatric disorders of developmental origin. Neurosci Res 2004; 50: 67–75.

    Article  CAS  PubMed  Google Scholar 

  32. Cannon TD, Mednick SA, Parnas J, Schulsinger F, Praestholm J, Vestergaard A . Developmental brain abnormalities in the offspring of schizophrenic mothers. I. Contributions of genetic and perinatal factors. Arch Gen Psychiatry 1993; 50: 551–564.

    Article  CAS  PubMed  Google Scholar 

  33. Nelson KB, Lynch JK . Stroke in newborn infants. Lancet Neurol 2004; 3: 150–158.

    Article  PubMed  Google Scholar 

  34. Gilmore JH, van Tol JJ, Lewis Streicher H, Williamson K, Cohen SB, Greenwood RS et al. Outcome in children with fetal mild ventriculomegaly: a case series. Schizophr Res 2001; 48: 219–226.

    Article  CAS  PubMed  Google Scholar 

  35. Cannon M, Caspi A, Moffitt TE, Harrington H, Taylor A, Murray RM et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: results from a longitudinal birth cohort. Arch Gen Psychiatry 2002; 59: 449–456.

    Article  PubMed  Google Scholar 

  36. Walker EF, Savoie T, Davis D . Neuromotor precursors of schizophrenia. Schizophr Bull 1994; 20: 441–451.

    Article  CAS  PubMed  Google Scholar 

  37. Jones P, Rodgers B, Murray R, Marmot M . Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994; 344: 1398–1402.

    Article  CAS  PubMed  Google Scholar 

  38. Done DJ, Crow TJ, Johnstone EC, Sacker A . Childhood antecedents of schizophrenia and affective illness: social adjustment at ages 7 and 11. BMJ 1994; 309: 699–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hollis C . Child and adolescent (juvenile onset) schizophrenia. A case control study of premorbid developmental impairments. Br J Psychiatry 1995; 166: 489–495.

    Article  CAS  PubMed  Google Scholar 

  40. Alaghband-Rad J, McKenna K, Gordon CT, Albus KE, Hamburger SD, Rumsey JM et al. Childhood-onset schizophrenia: the severity of premorbid course. J Am Acad Child Adolesc Psychiatry 1995; 34: 1273–1283.

    Article  CAS  PubMed  Google Scholar 

  41. Vourdas A, Pipe R, Corrigall R, Frangou S . Increased developmental deviance and premorbid dysfunction in early onset schizophrenia. Schizophr Res 2003; 62: 13–22.

    Article  PubMed  Google Scholar 

  42. Nicolson R, Rapoport JL . Childhood-onset schizophrenia: rare but worth studying. Biol Psychiatry 1999; 46: 1418–1428.

    Article  CAS  PubMed  Google Scholar 

  43. McCreadie RG, Padmavati R, Thara R, Srinivasan TN . Spontaneous dyskinesia and parkinsonism in never-medicated, chronically ill patients with schizophrenia: 18-month follow-up. Br J Psychiatry 2002; 181: 135–137.

    Article  CAS  PubMed  Google Scholar 

  44. McCreadie RG, Thara R, Srinivasan TN, Padmavathi R . Spontaneous dyskinesia in first-degree relatives of chronically ill, never-treated people with schizophrenia. Br J Psychiatry 2003; 183: 45–49.

    Article  PubMed  Google Scholar 

  45. Olin SC, Mednick SA . Risk factors of psychosis: identifying vulnerable populations premorbidly. Schizophr Bull 1996; 22: 223–240.

    Article  CAS  PubMed  Google Scholar 

  46. Davidson M, Reichenberg A, Rabinowitz J, Weiser M, Kaplan Z, Mark M . Behavioral and intellectual markers for schizophrenia in apparently healthy male adolescents. Am J Psychiatry 1999; 156: 1328–1335.

    CAS  PubMed  Google Scholar 

  47. Kremen WS, Buka SL, Seidman LJ, Goldstein JM, Koren D, Tsuang MT . IQ decline during childhood and adult psychotic symptoms in a community sample: a 19-year longitudinal study. Am J Psychiatry 1998; 155: 672–677.

    Article  CAS  PubMed  Google Scholar 

  48. Wilke M, Sohn JH, Byars AW, Holland SK . Bright spots: correlations of gray matter volume with IQ in a normal pediatric population. Neuroimage 2003; 20: 202–215.

    Article  PubMed  Google Scholar 

  49. Gochman P, Greenstein D, Sporn A, Gogtay N, Keller B, Rapoport JL . IQ decline and stabilization in childhood-onset schizophrenia. Submitted.

  50. Toulopoulou T, Grech A, Morris RG, Schulze K, McDonald C, Chapple B et al. The relationship between volumetric brain changes and cognitive function: a family study on schizophrenia. Biol Psychiatry 2004; 56: 447–453.

    Article  PubMed  Google Scholar 

  51. Donaldson S, Frangou S . Cognitive changes in early onset schizophrenia (EOS): a follow-up study. Schizophr Res 2003; 60 (Suppl 1): 132.

    Article  Google Scholar 

  52. Gochman P, Greenstein D, Sporn A, Gogtay N, Nicolson R, Keller A et al. Childhood onset schizophrenia: familial neurocognitive measures. Schizophr Res 2004; 71: 43–47.

    Article  PubMed  Google Scholar 

  53. Sporn A, Greenstein D, Gogtay N, Sailer F, Hommer DW, Rawlings R et al. Childhood onset schizophrenia: Smooth pursuit eye-tracking dysfunction in family members. Schizophr Res 2005; 73: 243–252.

    Article  PubMed  Google Scholar 

  54. Kim-Cohen J, Caspi A, Moffitt TE, Harrington H, Milne BJ, Poulton R . Prior juvenile diagnoses in adults with mental disorder: developmental follow-back of a prospective-longitudinal cohort. Arch Gen Psychiatry 2003; 60: 709–717.

    Article  PubMed  Google Scholar 

  55. Poulton R, Caspi A, Moffitt TE, Cannon M, Murray R, Harrington H . Children's self-reported psychotic symptoms and adult schizophreniform disorder: a 15-year longitudinal study. Arch Gen Psychiatry 2000; 57: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  56. Garralda ME . Characteristics of the psychoses of late onset in children and adolescents (a comparative study of hallucinating children). J Adolesc 1985; 8: 195–207.

    Article  CAS  PubMed  Google Scholar 

  57. Lawrie SM, Abukmeil SS . Brain abnormality in schizophrenia. A systematic and quantitative review of volumetric magnetic resonance imaging studies [see comments]. Br J Psychiatry 1998; 172: 110–120.

    Article  CAS  PubMed  Google Scholar 

  58. Wright IC, Rabe-Hesketh S, Woodruff PW, David AS, Murray RM, Bullmore ET . Meta-analysis of regional brain volumes in schizophrenia. Am J Psychiatry 2000; 157: 16–25.

    Article  CAS  PubMed  Google Scholar 

  59. Shenton M, Dickey CC, Frumin M, McCarley RW . A review of MRI findings in schizophrenia. Schizophr Res 2001; 49: 1–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Harrison PJ . The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122 (Part 4): 593–624.

    PubMed  Google Scholar 

  61. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  62. Harrison PJ, Weinberger DR . Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatry 2005; 10: 40–68.

    Article  CAS  PubMed  Google Scholar 

  63. Nelson MD, Saykin AJ, Flashman LA, Riordan HJ . Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry 1998; 55: 433–440.

    Article  CAS  PubMed  Google Scholar 

  64. Konick LC, Friedman L . Meta-analysis of thalamic size in schizophrenia. Biol Psychiatry 2001; 49: 28–38.

    Article  CAS  PubMed  Google Scholar 

  65. Davidson LL, Heinrichs RW . Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Res 2003; 122: 69–87.

    Article  PubMed  Google Scholar 

  66. Hirayasu Y, Shenton ME, Salisbury DF, Dickey CC, Fischer IA, Mazzoni P et al. Lower left temporal lobe MRI volumes in patients with first-episode schizophrenia compared with psychotic patients with first-episode affective disorder and normal subjects. Am J Psychiatry 1998; 155: 1384–1391.

    Article  CAS  PubMed  Google Scholar 

  67. Zipursky RB, Lambe EK, Kapur S, Mikulis DJ . Cerebral gray matter volume deficits in first episode psychosis. Arch Gen Psychiatry 1998; 55: 540–546.

    Article  CAS  PubMed  Google Scholar 

  68. Velakoulis D, Pantelis C, McGorry PD, Dudgeon P, Brewer W, Cook M et al. Hippocampal volume in first-episode psychoses and chronic schizophrenia: a high-resolution magnetic resonance imaging study. Arch Gen Psychiatry 1999; 56: 133–141.

    Article  CAS  PubMed  Google Scholar 

  69. Szeszko PR, Goldberg E, Gunduz-Bruce H, Ashtari M, Robinson D, Malhotra AK et al. Smaller anterior hippocampal formation volume in antipsychotic-naive patients with first-episode schizophrenia. Am J Psychiatry 2003; 160: 2190–2197.

    Article  PubMed  Google Scholar 

  70. Pantelis C, Velakoulis D, McGorry PD, Wood SJ, Suckling J, Phillips LJ et al. Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 2003; 361: 281–288.

    Article  PubMed  Google Scholar 

  71. DeLisi LE, Sakuma M, Tew W, Kushner M, Hoff AL, Grimson R . Schizophrenia as a chronic active brain process: a study of progressive brain structural change subsequent to the onset of schizophrenia [see comments]. Psychiatry Res 1997; 74: 129–140.

    Article  CAS  PubMed  Google Scholar 

  72. Nair TR, Christensen JD, Kingsbury SJ, Kumar NG, Terry WM, Garver DL . Progression of cerebroventricular enlargement and the subtyping of schizophrenia. Psychiatry Res 1997; 74: 141–150.

    Article  CAS  PubMed  Google Scholar 

  73. Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W et al. A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 1998; 55: 145–152.

    Article  CAS  PubMed  Google Scholar 

  74. Mathalon DH, Sullivan EV, Lim KO, Pfefferbaum A . Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58: 148–157.

    Article  CAS  PubMed  Google Scholar 

  75. Giedd JN, Snell JW, Lange N, Rajapakse JC, Casey BJ, Kozuch PL et al. Quantitative magnetic resonance imaging of human brain development: ages 4-18. Cereb Cortex 1996; 6: 551–560.

    Article  CAS  PubMed  Google Scholar 

  76. Giedd JN, Jeffries NO, Blumenthal J, Castellanos FX, Vaituzis AC, Fernandez T et al. Childhood-onset schizophrenia: progressive brain changes during adolescence. Biol Psychiatry 1999; 46: 892–898.

    Article  CAS  PubMed  Google Scholar 

  77. Gogtay N, Sporn A, Clasen LS, Nugent III TF, Greenstein D, Nicolson R et al. Comparison of progressive cortical gray matter loss in childhood-onset schizophrenia with that in childhood-onset atypical psychoses. Arch Gen Psychiatry 2004; 61: 17–22.

    Article  PubMed  Google Scholar 

  78. Zecevic N, Bourgeois JP, Rakic P . Changes in synaptic density in motor cortex of rhesus monkey during fetal and postnatal life. Brain Res Dev Brain Res 1989; 50: 11–32.

    Article  CAS  PubMed  Google Scholar 

  79. Huttenlocher PR, Dabholkar AS . Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 1997; 387: 167–178.

    Article  CAS  PubMed  Google Scholar 

  80. Frazier JA, Giedd JN, Hamburger SD, Albus KE, Kaysen D, Vaituzis AC et al. Brain anatomic magnetic resonance imaging in childhood-onset schizophrenia. Arch Gen Psychiatry 1996; 53: 617–624.

    Article  CAS  PubMed  Google Scholar 

  81. Matsumoto H, Simmons A, Williams S, Pipe R, Murray R, Frangou S . Structural magnetic imaging of the hippocampus in early onset schizophrenia. Biol Psychiatry 2001; 49: 824–831.

    Article  CAS  PubMed  Google Scholar 

  82. Jacobsen LK, Giedd JN, Vaituzis AC, Hamburger SD, Rajapakse JC, Frazier JA et al. Temporal lobe morphology in childhood-onset schizophrenia. Am J Psychiatry 1996; 153: 355–361.

    Article  CAS  PubMed  Google Scholar 

  83. Findling RL, Friedman L, Kenny JT, Swales TP, Cola DM, Schulz SC . Adolescent schizophrenia: a methodologic review of the current neuroimaging and neuropsychologic literature. J Autism Dev Disord 1995; 25: 627–639.

    Article  CAS  PubMed  Google Scholar 

  84. Levitt JG, Blanton RE, Caplan R, Asarnow R, Guthrie D, Toga AW et al. Medial temporal lobe in childhood-onset schizophrenia. Psychiatry Res 2001; 108: 17–27.

    Article  CAS  PubMed  Google Scholar 

  85. Matsumoto H, Simmons A, Williams S, Hadjulis M, Pipe R, Murray R et al. Superior temporal gyrus abnormalities in early-onset schizophrenia: similarities and differences with adult-onset schizophrenia. Am J Psychiatry 2001; 158: 1299–1304.

    Article  CAS  PubMed  Google Scholar 

  86. Jacobsen LK, Giedd JN, Castellanos FX, Vaituzis AC, Hamburger SD, Kumra S et al. Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am J Psychiatry 1998; 155: 678–685.

    Article  CAS  PubMed  Google Scholar 

  87. Dasari M, Friedman L, Jesberger J, Stuve TA, Findling RL, Swales TP et al. A magnetic resonance imaging study of thalamic area in adolescent patients with either schizophrenia or bipolar disorder as compared to healthy controls. Psychiatry Res 1999; 91: 155–162.

    Article  CAS  PubMed  Google Scholar 

  88. Thompson PM, Vidal C, Giedd JN, Gochman P, Blumenthal J, Nicolson R et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98: 11650–11655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hof PR, Haroutunian V, Friedrich Jr VL, Byne W, Buitron C, Perl DP et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53: 1075–1085.

    Article  CAS  PubMed  Google Scholar 

  91. Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P . Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 2000; 28: 53–67.

    Article  CAS  PubMed  Google Scholar 

  92. Mirnics K, Middleton FA, Lewis DA, Levitt P . Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 2001; 24: 479–486.

    Article  CAS  PubMed  Google Scholar 

  93. Mirnics K, Middleton FA, Lewis DA, Levitt P . Delineating novel signature patterns of altered gene expression in schizophrenia using gene microarrays. Sci World J 2001; 1: 114–116.

    Article  CAS  Google Scholar 

  94. Mirnics K, Middleton FA, Lewis DA, Levitt P . The human genome: gene expression profiling and schizophrenia. Am J Psychiatry 2001; 158: 1384.

    Article  CAS  PubMed  Google Scholar 

  95. Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P . Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 2002; 22: 2718–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Addington AM, Gornick M, Duckworth J, Sporn A, Gogtay N, Bobb A et al. GAD1 (2q31.1), which encodes glutamic acid decarboxylase (GAD(67)), is associated with childhood-onset schizophrenia and cortical gray matter volume loss. Mol Psychiatry 2004; 9: 1–8.

    Article  Google Scholar 

  97. Akbarian S, Kim JJ, Potkin SG, Hagman JO, Tafazzoli A, Bunney Jr WE et al. Gene expression for glutamic acid decarboxylase is reduced without loss of neurons in prefrontal cortex of schizophrenics. Arch Gen Psychiatry 1995; 52: 258–266.

    Article  CAS  PubMed  Google Scholar 

  98. Law AJ, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ . Changes in NMDA receptor subunit mRNAs and cyclophilin mRNA during development of the human hippocampus. Ann NY Acad Sci 2003; 1003: 426–430.

    Article  CAS  PubMed  Google Scholar 

  99. Webster MJ, Weickert CS, Herman MM, Kleinman JE . BDNF mRNA expression during postnatal development, maturation and aging of the human prefrontal cortex. Brain Res Dev Brain Res 2002; 139: 139–150.

    Article  CAS  PubMed  Google Scholar 

  100. Owen MJ, Williams NM, O’Donovan MC . The molecular genetics of schizophrenia: new findings promise new insights. Mol Psychiatry 2004; 9: 14–27.

    Article  CAS  PubMed  Google Scholar 

  101. Childs B, Scriver CR . Age at onset and causes of disease. Persp Biol Med 1986; 29 (3 Part 1): 437–460.

    Article  CAS  Google Scholar 

  102. St George-Hyslop PH . Genetic factors in the genesis of Alzheimer's disease. Ann NY Acad Sci 2000; 924: 1–7.

    Article  CAS  PubMed  Google Scholar 

  103. Bishop DT . BRCA1 and BRCA2 and breast cancer incidence: a review. Ann Oncol 1999; 10 (Suppl 6): 113–119.

    Article  PubMed  Google Scholar 

  104. Asarnow RF, Nuechterlein KH, Fogelson D, Subotnik KL, Payne DA, Russell AT et al. Schizophrenia and schizophrenia-spectrum personality disorders in the first-degree relatives of children with schizophrenia: the UCLA family study. Arch Gen Psychiatry 2001; 58: 581–588.

    Article  CAS  PubMed  Google Scholar 

  105. Nicolson R, Brookner FB, Lenane M, Gochman P, Ingraham LJ, Egan MF et al. Parental schizophrenia spectrum disorders in childhood-onset and adult-onset schizophrenia. Am J Psychiatry 2003; 160: 490–495.

    Article  PubMed  Google Scholar 

  106. Sporn AL, Addington AM, Gogtay N, Ordonez AE, Gornick M, Clasen L et al. Pervasive developmental disorder and childhood-onset schizophrenia: comorbid disorder or a phenotypic variant of a very early onset illness? Biol Psychiatry 2004; 55: 989–994.

    Article  PubMed  Google Scholar 

  107. Straub RE, Straub RE, Lipska BK, Egan MF, Goldberg TE, Callicott JH et al. GAD1, which encodes glutamate decarbozylase 1 (GAD 67), is associated with adult onset schizophrenia in two independent samples. Am J Med Genet 2003; 122B: 177.

    Google Scholar 

  108. Addington AM, Gornick M, Sporn AL, Gogtay N, Greenstein D, Lenane M et al. Polymorphisms in the 13q33.2 gene G72/G30 are associated with childhood-onset schizophrenia and psychosis not otherwise specified. Biol Psychiatry 2004; 55: 976–980.

    Article  CAS  PubMed  Google Scholar 

  109. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA 2002; 99: 13675–13680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Korostishevsky M, Kaganovich M, Cholostoy A, Ashkenazi M, Ratner Y, Dahary D et al. Is the G72/G30 locus associated with schizophrenia? Single nucleotide polymorphisms, haplotypes, and gene expression analysis. Biol Psychiatry 2004; 56: 169–176.

    Article  CAS  PubMed  Google Scholar 

  111. Gornick M, Addington AM, Sporn A, Gogtay N, Greenstein D, Lenane M et al. Dysbindin (DTNBP1, 6p22.3) is associated with childhood onset psychosis and endophenotypes measured by the Premorbid Adjustment Scale (PAS). J Autism Dev Disorders, in press.

  112. St Clair D, Blackwood D, Muir W, Carothers A, Walker M, Spowart G et al. Association within a family of a balanced autosomal translocation with major mental illness. Lancet 1990; 336: 13–16.

    Article  CAS  PubMed  Google Scholar 

  113. Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA et al. Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 2000; 9: 1415–1423.

    Article  CAS  PubMed  Google Scholar 

  114. Demirhan O, Tastemir D . Chromosome aberrations in a schizophrenia population. Schizophr Res 2003; 65: 1–7.

    Article  PubMed  Google Scholar 

  115. Bassett AS, Chow EW, Weksberg R . Chromosomal abnormalities and schizophrenia. Am J Med Genet 2000; 97: 45–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nicolson R, Giedd JN, Lenane M, Hamburger S, Singaracharlu S, Bedwell J et al. Clinical and neurobiological correlates of cytogenetic abnormalities in childhood-onset schizophrenia. Am J Psychiatry 1999; 156: 1575–1579.

    Article  CAS  PubMed  Google Scholar 

  117. Yan WL, Guan XY, Green ED, Nicolson R, Yap TK, Zhang J et al. Childhood-onset schizophrenia/autistic disorder and t(1;7) reciprocal translocation: identification of a BAC contig spanning the translocation breakpoint at 7q21. Am J Med Genet 2000; 96: 749–753.

    Article  CAS  PubMed  Google Scholar 

  118. Sporn A, Addington A, Reiss AL, Dean M, Gogtay N, Potocnik U et al. 22q11 deletion syndrome in childhood onset schizophrenia: an update. Mol Psychiatry 2004; 9: 225–226.

    Article  CAS  PubMed  Google Scholar 

  119. Bassett AS, Chow EW . 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol Psychiatry 1999; 46: 882–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. van Amelsvoort T, Daly E, Robertson D, Suckling J, Ng V, Critchley H et al. Structural brain abnormalities associated with deletion at chromosome 22q11: quantitative neuroimaging study of adults with velo-cardio-facial syndrome. Br J Psychiatry 2001; 178: 412–419.

    Article  CAS  PubMed  Google Scholar 

  121. Murphy KC . Schizophrenia and velo-cardio-facial syndrome. Lancet 2002; 359: 426–430.

    Article  PubMed  Google Scholar 

  122. Murphy KC, Jones LA, Owen MJ . High rates of schizophrenia in adults with velo-cardio-facial syndrome. Arch Gen Psychiatry 1999; 56: 940–945.

    Article  CAS  PubMed  Google Scholar 

  123. Krahn LE, Maraganore DM, Michels VV . Childhood-onset schizophrenia associated with parkinsonism in a patient with a microdeletion of chromosome 22. Mayo Clin Proc 1998; 73: 956–959.

    Article  CAS  PubMed  Google Scholar 

  124. Eliez S, Schmitt JE, White CD, Reiss AL . Children and adolescents with velocardiofacial syndrome: a volumetric MRI study. Am J Psychiatry 2000; 157: 409–415.

    Article  CAS  PubMed  Google Scholar 

  125. Liu H, Abecasis GR, Heath SC, Knowles A, Demars S, Chen YJ et al. Genetic variation in the 22q11 locus and susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 16859–16864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Liu H, Heath SC, Sobin C, Roos JL, Galke BL, Blundell ML et al. Genetic variation at the 22q11 PRODH2/DGCR6 locus presents an unusual pattern and increases susceptibility to schizophrenia. Proc Natl Acad Sci USA 2002; 99: 3717–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Williams HJ, Williams N, Spurlock G, Norton N, Zammit S, Kirov G et al. Detailed analysis of PRODH and PsPRODH reveals no association with schizophrenia. Am J Med Genet 2003; 120B: 42–46.

    Article  CAS  PubMed  Google Scholar 

  128. Ohtsuki T, Tanaka S, Ishiguro H, Noguchi E, Arinami T, Tanabe E et al. Failure to find association between PRODH deletion and schizophrenia. Schizophr Res 2004; 67: 111–113.

    Article  PubMed  Google Scholar 

  129. Maynard TM, Haskell GT, Peters AZ, Sikich L, Lieberman JA, LaMantia AS . A comprehensive analysis of 22q11 gene expression in the developing and adult brain. Proc Natl Acad Sci USA 2003; 100: 14433–14438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998; 20: 207–211.

    Article  CAS  PubMed  Google Scholar 

  131. Vissers LE, de Vries BB, Osoegawa K, Janssen IM, Feuth T, Choy CO et al. Array-based comparative genomic hybridization for the genomewide detection of submicroscopic chromosomal abnormalities. Am J Hum Genet 2003; 73: 1261–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shaw-Smith C, Redon R, Rickman L, Rio M, Willatt L, Fiegler H et al. Microarray based comparative genomic hybridisation (array-CGH) detects submicroscopic chromosomal deletions and duplications in patients with learning disability/mental retardation and dysmorphic features. J Med Genet 2004; 41: 241–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Snijders AM, Pinkel D, Albertson DG . Current status and future prospects of array-based comparative genomic hybridisation. Brief Funct Genomic Proteomic 2003; 2: 37–45.

    Article  CAS  PubMed  Google Scholar 

  134. Shaffer LG, Bejjani BA . A cytogeneticist's perspective on genomic microarrays. Hum Reprod Update 2004; 10: 221–226.

    Article  CAS  PubMed  Google Scholar 

  135. Schaeffer AJ, Chung J, Heretis K, Wong A, Ledbetter DH, Lese Martin C . Comparative genomic hybridization-array analysis enhances the detection of aneuploidies and submicroscopic imbalances in spontaneous miscarriages. Am J Hum Genet 2004; 74: 1168–1174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Klein OD, Cotter PD, Albertson DG, Pinkel D, Tidyman WE, Moore MW et al. Prader-Willi syndrome resulting from an unbalanced translocation: characterization by array comparative genomic hybridization. Clin Genet 2004; 65: 477–482.

    Article  CAS  PubMed  Google Scholar 

  137. Carter NP . As normal as normal can be? Nat Genet 2004; 36: 931–932.

    Article  CAS  PubMed  Google Scholar 

  138. Perkins DO, Jeffries C, Sullivan P . Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia. Mol Psychiatry 2005; 10: 69–78.

    Article  CAS  PubMed  Google Scholar 

  139. Bjornsson HT, Fallin MD, Feinberg AP . An integrated epigenetic and genetic approach to common human disease. Trends Genet 2004; 20: 350–358.

    Article  CAS  PubMed  Google Scholar 

  140. Petronis A . Human morbid genetics revisited: relevance of epigenetics. Trends Genet 2001; 17: 142–146.

    Article  CAS  PubMed  Google Scholar 

  141. Petronis A, Gottesman II, Kan P, Kennedy JL, Basile VS, Paterson AD et al. Monozygotic twins exhibit numerous epigenetic differences: clues to twin discordance? Schizophr Bull 2003; 29: 169–178.

    Article  PubMed  Google Scholar 

  142. Weaver IC, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR et al. Epigenetic programming by maternal behavior. Nat Neurosci 2004; 7: 847–854.

    Article  CAS  PubMed  Google Scholar 

  143. Wender PH . Some speculations concerning a possible biochemical basis of minimal brain dysfunction. Life Sci 1974; 14: 1605–1621.

    Article  CAS  PubMed  Google Scholar 

  144. Cheung VG, Spielman RS . The genetics of variation in gene expression. Nat Genet 2002; 32 (Suppl): 522–525.

    Article  CAS  PubMed  Google Scholar 

  145. Breitbart RE, Andreadis A, Nadal-Ginard B . Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 1987; 56: 467–495.

    Article  CAS  PubMed  Google Scholar 

  146. Zavolan M, Kondo S, Schonbach C, Adachi J, Hume DA, Hayashizaki Y et al. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res 2003; 13: 1290–1300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Redmond Jr DE, Zhao JL, Randall JD, Eklund AC, Eusebi LO, Roth RH et al. Spatiotemporal patterns of gene expression during fetal monkey brain development. Brain Res Dev Brain Res 2003; 146: 99–106.

    Article  CAS  PubMed  Google Scholar 

  148. Bondy CA, Cheng CM . Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol 2004; 490: 25–31.

    Article  CAS  PubMed  Google Scholar 

  149. Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S et al. Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 2002; 71: 877–892.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Corfas G, Roy K, Buxbaum JD . Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 2004; 7: 575–580.

    Article  CAS  PubMed  Google Scholar 

  151. Lundgren P, Johansson L, Englund C, Sellstrom A, Mattsson MO . Expression pattern of glutamate decarboxylase (GAD) in the developing cortex of the embryonic chick brain. Int J Dev Neurosci 1997; 15: 127–137.

    Article  CAS  PubMed  Google Scholar 

  152. Kultas-Ilinsky K, Fallet C, Verney C . Development of the human motor-related thalamic nuclei during the first half of gestation, with special emphasis on GABAergic circuits. J Comp Neurol 2004; 476: 267–289.

    Article  CAS  PubMed  Google Scholar 

  153. Maqueda J, Ramirez M, Lamas M, Gutierrez R . Glutamic acid decarboxylase (GAD)67, but not GAD65, is constitutively expressed during development and transiently overexpressed by activity in the granule cells of the rat. Neurosci Lett 2003; 353: 69–71.

    Article  CAS  PubMed  Google Scholar 

  154. Frahm C, Draguhn A . GAD and GABA transporter (GAT-1) mRNA expression in the developing rat hippocampus. Brain Res Dev Brain Res 2001; 132: 1–13.

    Article  CAS  PubMed  Google Scholar 

  155. Millar JK, Christie S, Anderson S, Lawson D, Hsiao-Wei Loh D, Devon RS et al. Genomic structure and localisation within a linkage hotspot of disrupted in schizophrenia 1, a gene disrupted by a translocation segregating with schizophrenia. Mol Psychiatry 2001; 6: 173–178.

    Article  CAS  PubMed  Google Scholar 

  156. Hennah W, Varilo T, Kestila M, Paunio T, Arajarvi R, Haukka J et al. Haplotype transmission analysis provides evidence of association for DISC1 to schizophrenia and suggests sex-dependent effects. Hum Mol Genet 2003; 12: 3151–3159.

    Article  CAS  PubMed  Google Scholar 

  157. Millar JK, James R, Brandon NJ, Thomson PA . DISC1 and DISC2: discovering and dissecting molecular mechanisms underlying psychiatric illness. Ann Med 2004; 36: 367–378.

    Article  CAS  PubMed  Google Scholar 

  158. Numakawa T, Yagasaki Y, Ishimoto T, Okada T, Suzuki T, Iwata N et al. Evidence of novel neuronal functions of dysbindin, a susceptibility gene for schizophrenia. Hum Mol Genet 2004; 13: 2699–2708.

    Article  CAS  PubMed  Google Scholar 

  159. Ohnuma T, Augood SJ, Arai H, McKenna PJ, Emson PC . Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptors 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Brain Res Mol Brain Res 1998; 56: 207–217.

    Article  CAS  PubMed  Google Scholar 

  160. Egan MF, Straub RE, Goldberg TE, Yakub I, Callicott JH, Hariri AR et al. Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proc Natl Acad Sci USA 2004; 101: 12604–12609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Szabo G, Katarova Z, Greenspan R . Distinct protein forms are produced from alternatively spliced bicistronic glutamic acid decarboxylase mRNAs during development. Mol Cell Biol 1994; 14: 7535–7545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bondy CA . Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci 1991; 11: 3442–3455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Longart M, Liu Y, Karavanova I, Buonanno A . Neuregulin-2 is developmentally regulated and targeted to dendrites of central neurons. J Comp Neurol 2004; 472: 156–172.

    Article  CAS  PubMed  Google Scholar 

  164. Plomin R, Fulker D, Corley R, DeFries JC . Nature, nurture and cognitive development from 1 to 16 years: a parent–offspring adoption study. Psychol Sci 1997; 8: 442–447.

    Article  Google Scholar 

  165. Plomin R, Spinath FM . Intelligence: genetics, genes, and genomics. J Pers Soc Psychol 2004; 86: 112–129.

    Article  PubMed  Google Scholar 

  166. Eliez S, Blasey CM, Schmitt EJ, White CD, Hu D, Reiss AL . Velocardiofacial syndrome: are structural changes in the temporal and mesial temporal regions related to schizophrenia? Am J Psychiatry 2001; 158: 447–453.

    Article  CAS  PubMed  Google Scholar 

  167. Amsterdam A, Nissen RM, Sun Z, Swindell EC, Farrington S, Hopkins N . INAUGURAL ARTICLE: Identification of 315 genes essential for early zebrafish development. Proc Natl Acad Sci USA 2004; 101: 12792–12797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Eliez S, Antonarakis SE, Morris MA, Dahoun SP, Reiss AL . Parental origin of the deletion 22q11.2 and brain development in velocardiofacial syndrome: a preliminary study. Arch Gen Psychiatry 2001; 58: 64–68.

    Article  CAS  PubMed  Google Scholar 

  169. Sebat J, Lakshmi B, Troge J, Alexander J, Young J, Lundin P et al. Large-scale copy number polymorphism in the human genome. Science 2004; 305: 525–528.

    Article  CAS  PubMed  Google Scholar 

  170. McDonald C, Murray RM . Early and late environmental risk factors for schizophrenia. Brain Res Rev 2000; 31: 130–137.

    Article  CAS  PubMed  Google Scholar 

  171. Lipska BK, Weinberger DR . A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res 2002; 4: 469–475.

    Article  PubMed  Google Scholar 

  172. Lipska BK, Weinberger DR . Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats. Proc Natl Acad Sci USA 1995; 92: 8906–8910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Lipska BK, Swerdlow NR, Geyer MA, Jaskiw GE, Braff DL, Weinberger DR . Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 1995; 122: 35–43.

    Article  CAS  Google Scholar 

  174. Sumiyoshi T, Tsunoda M, Uehara T, Tanaka K, Itoh H, Sumiyoshi C et al. Enhanced locomotor activity in rats with excitotoxic lesions of the entorhinal cortex, a neurodevelopmental animal model of schizophrenia: behavioral and in vivo microdialysis studies. Neurosci Lett 2004; 364: 124–129.

    Article  CAS  PubMed  Google Scholar 

  175. Koenig JI, Kirkpatrick B, Lee P . Glucocorticoid hormones and early brain development in schizophrenia. Neuropsychopharmacology 2002; 27: 309–318.

    Article  CAS  PubMed  Google Scholar 

  176. Jin X, Hu H, Mathers PH, Agmon A . Brain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures. J Neurosci 2003; 23: 5662–5673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Molteni R, Lipska BK, Weinberger DR, Racagni G, Riva MA . Developmental and stress-related changes of neurotrophic factor gene expression in an animal model of schizophrenia. Mol Psychiatry 2001; 6: 285–292.

    Article  CAS  PubMed  Google Scholar 

  178. Lipska BK . Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 2004; 29: 282–286.

    PubMed  PubMed Central  Google Scholar 

  179. Smalley SL, Bailey JN, Palmer CG, Cantwell DP, McGough JJ, Del’Homme MA et al. Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder. Mol Psychiatry 1998; 3: 427–430.

    Article  CAS  PubMed  Google Scholar 

  180. Ellenbroek BA . Animal models in the genomic era: possibilities and limitations with special emphasis on schizophrenia. Behav Pharmacol 2003; 14: 409–417.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Richard Straub and Aaron Bobb for helpful comments on this manuscript and Jeff Stathes for editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J L Rapoport.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rapoport, J., Addington, A., Frangou, S. et al. The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10, 434–449 (2005). https://doi.org/10.1038/sj.mp.4001642

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001642

Keywords

This article is cited by

Search

Quick links