Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

Cleavage fragments of the third complement component (C3) enhance stromal derived factor-1 (SDF-1)-mediated platelet production during reactive postbleeding thrombocytosis

Abstract

We hypothesized that the third complement component (C3) cleavage fragments (C3a and des-ArgC3a) are involved in stress/inflammation-related thrombocytosis, and investigated their potential role in reactive thrombocytosis induced by bleeding. We found that platelet counts are lower in C3-deficient mice in response to excessive bleeding as compared to normal littermates and that C3a and des-ArgC3a enhance stromal-derived factor-1 (SDF-1)-dependent megakaryocyte (Megs) migration, adhesion and platelet shedding. At the molecular level, C3a stimulates in Megs MAPKp42/44 phosphorylation, and enhances incorporation of CXCR4 into membrane lipid rafts increasing the responsiveness of Megs to SDF-1. We found that perturbation of lipid raft formation by statins decreases SDF-1/C3a-dependent platelet production in vitro and in an in vivo model statins ameliorated post-bleeding thrombocytosis. Thus, inhibition of lipid raft formation could find potential clinical application as a means of ameliorating some forms of thrombocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Long MW, Hoffman R (eds). Hematology: Basic Principles and Practice. Churchill Livingstone: New York, 1999, p245.

    Google Scholar 

  2. Gewirtz AM . Megakaryopoiesis: state of the art. Thromb Haemost 1995; 74: 204–209.

    CAS  PubMed  Google Scholar 

  3. Gurney AL, Carver-Moore K, de Sauvage FJ, Moore MW . Thrombocytopenia in c-mpl-deficient mice. Science 1994; 265: 1445–1447.

    Article  CAS  PubMed  Google Scholar 

  4. Gurney AL, de Sauvage FJ . Dissection of c-Mpl and thrombopoietin function: studies of knockout mice and receptor signal transduction. Stem Cells 1996; 14 (Suppl 1): 116–123.

    Article  PubMed  Google Scholar 

  5. Bunting S, Widmer R, Lipari T, Rangell L, Steinmetz H, Carver-Moore K et al. Normal platelets and megakaryocytes are produced in vivo in the absence of thrombopoietin. Blood 1997; 90: 3423–3429.

    CAS  PubMed  Google Scholar 

  6. Sasaki H, Hirabayashi Y, Ishibashi T, Inoue T, Matsuda M, Kai S et al. Effects of erythropoietin, IL-3, IL-6 and LIF on a murine megakaryoblastic cell line: growth enhancement and expression of receptor mRNAs. Leuk Res 1995; 19: 95–102.

    Article  CAS  PubMed  Google Scholar 

  7. Burstein SA, Mei RL, Henthorn J, Friese P, Turner K . Leukemia inhibitory factor and interleukin-11 promote maturation of murine and human megakaryocytes in vitro. J Cell Physiol 1992; 153: 305–312.

    Article  CAS  PubMed  Google Scholar 

  8. Neben TY, Loebelenz J, Hayes L, McCarthy K, Stoudemire J, Schaub R et al. Recombinant human interleukin-11 stimulates megakaryocytopoiesis and increases peripheral platelets in normal and splenectomized mice. Blood 1993; 81: 901–908.

    CAS  PubMed  Google Scholar 

  9. Majka M, Ratajczak J, Villaire G, Kubiczek K, Marquez LA, Janowska-Wieczorek A et al. Thrombopoietin, but not cytokines binding to gp130 protein-coupled receptors, activates MAPKp42/44, AKT, and STAT proteins in normal human CD34+ cells, megakaryocytes, and platelets. Exp Hematol 2002; 30: 751–760.

    Article  CAS  PubMed  Google Scholar 

  10. Gainsford T, Nandurkar H, Metcalf D, Robb L, Begley CG, Alexander WS . The residual megakaryocyte and platelet production in c-mpl-deficient mice is not dependent on the actions of interleukin-6, interleukin-11, or leukemia inhibitory factor. Blood 2000; 95: 528–534.

    CAS  PubMed  Google Scholar 

  11. Wang JF, Liu ZY, Groopman JE . The alpha-chemokine receptor CXCR4 is expressed on the megakaryocytic lineage from progenitor to platelets and modulates migration and adhesion. Blood 1998; 92: 756–764.

    CAS  PubMed  Google Scholar 

  12. Hamada T, Mohle R, Hesselgesser J, Hoxie J, Nachman RL, Moore MA et al. Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1 (SDF-1) enhances platelet formation. J Exp Med 1998; 188: 539–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kowalska MA, Ratajczak J, Hoxie J, Brass LF, Gewirtz A, Poncz M et al. Megakaryocyte precursors, megakaryocytes and platelets express the HIV co-receptor CXCR4 on their surface: determination of response to stromal-derived factor-1 by megakaryocytes and platelets. Br J Haematol 1999; 104: 220–229.

    Article  CAS  PubMed  Google Scholar 

  14. Riviere C, Subra F, Cohen-Solal K, Cordette-Lagarde V, Letestu R, Auclair C et al. Phenotypic and functional evidence for the expression of CXCR4 receptor during megakaryocytopoiesis. Blood 1999; 93: 1511–1523.

    CAS  PubMed  Google Scholar 

  15. Hodohara K, Fujii N, Yamamoto N, Kaushansky K . Stromal cell-derived factor-1 (SDF-1) acts together with thrombopoietin to enhance the development of megakaryocytic progenitor cells (CFU-MK). Blood 2000; 95: 769–775.

    CAS  PubMed  Google Scholar 

  16. Majka M, Janowska-Wieczorek A, Ratajczak J, Kowalska MA, Vilaire G, Pan ZK et al. Stromal-derived factor 1 and thrombopoietin regulate distinct aspects of human megakaryopoiesis. Blood 2000; 96: 4142–4151.

    CAS  PubMed  Google Scholar 

  17. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 2004; 10: 64–71.

    Article  CAS  PubMed  Google Scholar 

  18. Nguyen DH, Taub D . CXCR4 function requires membrane cholesterol: implications for HIV infection. J Immunol 2002; 168: 4121–4126.

    Article  CAS  PubMed  Google Scholar 

  19. Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC et al. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003; 302: 445–449.

    Article  CAS  PubMed  Google Scholar 

  20. Wysoczynski M, Reca R, Ratajczak J, Kucia M, Shirvaikar N, Honczarenko M et al. Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 2005; 105: 40–48.

    Article  CAS  PubMed  Google Scholar 

  21. Quinton TM, Kim S, Jin J, Kunapuli SP . Lipid rafts are required in Galpha(i) signaling downstream of the P2Y12 receptor during ADP-mediated platelet activation. J Thromb Haemost 2005; 3: 1036–1041.

    Article  CAS  PubMed  Google Scholar 

  22. Reca R, Mastellos D, Majka M, Marquez L, Ratajczak J, Franchini S et al. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood 2003; 101: 3784–3793.

    Article  CAS  PubMed  Google Scholar 

  23. Ratajczak MZ, Reca R, Wysoczynski M, Kucia M, Baran JT, Allendorf DJ et al. Transplantation studies in C3-deficient animals reveal a novel role of the third complement component (C3) in engraftment of bone marrow cells. Leukemia 2004; 18: 1482–1490.

    Article  CAS  PubMed  Google Scholar 

  24. Ratajczak MZ, Kucia M, Reca R, Majka M, Janowska-Wieczorek A, Ratajczak J . Stem cell plasticity revisited: CXCR4-positive cells expressing mRNA for early muscle, liver and neural cells ‘hide out’ in the bone marrow. Leukemia 2004; 18: 29–40.

    Article  CAS  PubMed  Google Scholar 

  25. Schafer AI . Thrombocytosis and thrombocythemia. Blood Rev 2001; 15: 159–166.

    Article  CAS  PubMed  Google Scholar 

  26. Christenson JT . Preoperative lipid-control with simvastatin reduces the risk of postoperative thrombocytosis and thrombotic complications following CABG. Eur J Cardiothorac Surg 1999; 15: 394–399.

    Article  CAS  PubMed  Google Scholar 

  27. Goldfarb RD, Parrillo JE . Complement. Crit Care Med 2005; 33: 482–484.

    Article  Google Scholar 

  28. Kalant D, Cain SA, Maslowska M, Sniderman AD, Cianflone K, Monk PN . The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein. J Biol Chem 2003; 278: 11123–11129.

    Article  CAS  PubMed  Google Scholar 

  29. Lane WJ, Dias S, Hattori K, Heissig B, Choy M, Rabbany SY et al. Stromal-derived factor 1-induced megakaryocyte migration and platelet production is dependent on matrix metalloproteinases. Blood 2000; 96: 4152–4159.

    CAS  PubMed  Google Scholar 

  30. Polley MJ, Nachman RL . Human platelet activation by C3a and C3a des-arg. J Exp Med 1983; 158: 603–615.

    Article  CAS  PubMed  Google Scholar 

  31. Del Conde I, Cruz MA, Zhang H, Lopez JA, Afshar-Kharghan V . Platelet activation leads to activation and propagation of the complement system. J Exp Med 2005; 201: 871–879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Biro E, Akkerman JW, Hoek FJ, Gorter G, Pronk LM, Sturk A et al. The phospholipid composition and cholesterol content of platelet-derived microparticles: a comparison with platelet membrane fractions. J Thromb Haemost 2005; 3: 2754–2763.

    Article  CAS  PubMed  Google Scholar 

  33. Colli S, Werba JP, Tremoli E . Statins in atherothrombosis. Semin Vasc Med 2004; 4: 407–415.

    Article  PubMed  Google Scholar 

  34. Shimada H, Oohira G, Okazumi S, Matsubara H, Nabeya Y, Hayashi H et al. Thrombocytosis associated with poor prognosis in patients with esophageal carcinoma. J Am Coll Surg 2004; 198: 737–741.

    Article  PubMed  Google Scholar 

  35. Aoe K, Hiraki A, Yamazaki K, Nakamura Y, Murakami T, Maeda T et al. Thrombocytosis as a useful prognostic indicator in patients with lung cancer. Respiration 2004; 71: 170–173.

    Article  PubMed  Google Scholar 

  36. Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer 2005; 113: 752–760.

    Article  CAS  PubMed  Google Scholar 

  37. Ratajczak J, Wysoczynski M, Hayek F, Janowska-Wieczorek A, Ratajczak MZ . Membrane-derived microvesicles (MV): important and underappreciated mediators of cell to cell communication. Leukemia 2006; 20: 1487–1495.

    Article  CAS  PubMed  Google Scholar 

  38. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R, Dvorak P et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847–856.

    Article  CAS  PubMed  Google Scholar 

  39. Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM . Statins and cancer prevention. Nat Rev Cancer 2005; 5: 930–942.

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang L, Kim J, Adam RM, Solomon KR, Freeman MR . Cholesterol targeting alters lipid raft composition and cell survival in prostate cancer cells and xenografts. J Clin Invest 2005; 115: 959–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by an NIH Grant R01 DK074720-01 to MZR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Z Ratajczak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wysoczynski, M., Kucia, M., Ratajczak, J. et al. Cleavage fragments of the third complement component (C3) enhance stromal derived factor-1 (SDF-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia 21, 973–982 (2007). https://doi.org/10.1038/sj.leu.2404629

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404629

Keywords

This article is cited by

Search

Quick links