Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance

Abstract

CD33 is expressed on the malignant blast cells in most cases of acute myeloid leukemia (AML) but not on normal hematopoietic pluripotent stem cells. Antibody-based therapies for AML have, therefore, focused on CD33 as a suitable tumor-associated target antigen. The most promising results have been obtained with gemtuzumab ozogamicin (GO, Mylotarg™), a humanized IgG4 anti-CD33 monoclonal antibody joined to a calicheamicin-γ1 derivative. Engagement of CD33 by GO results in immunoconjugate internalization and hydrolytic release of the toxic calicheamicin moiety, which, in turn, causes DNA damage and cell death. Since 2000, when GO was approved for clinical use, treatment trials and pilot studies have revealed potential expanded applications along with additional limitations. At the same time, correlative biological and in vitro functional studies have further characterized CD33 expression patterns in AML, the significance of CD33–antibody interactions, pathways involved in GO-induced cytotoxicity and potential drug resistance mechanisms. This review summarizes the recent data addressing mechanisms of GO action and discusses their relevance with regard to clinical applications and the limitations of using experimental model systems to mimic in vivo conditions. As the first drug conjugate approved for clinical use, GO serves as an important paradigm for other immunoconjugates against internalizing tumor antigens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ravandi F, Kantarjian H, Giles F, Cortes J . New agents in acute myeloid leukemia and other myeloid disorders. Cancer 2004; 100: 441–454.

    Article  CAS  PubMed  Google Scholar 

  2. Caron PC, Co MS, Bull MK, Avdalovic NM, Queen C, Scheinberg DA . Biological and immunological features of humanized M195 (anti-CD33) monoclonal antibodies. Cancer Res 1992; 52: 6761–6767.

    CAS  PubMed  Google Scholar 

  3. Appelbaum FR, Matthews DC, Eary JF, Badger CC, Kellogg M, Press OW et al. The use of radiolabeled anti-CD33 antibody to augment marrow irradiation prior to marrow transplantation for acute myelogenous leukemia. Transplantation 1992; 54: 829–833.

    Article  CAS  PubMed  Google Scholar 

  4. Hamann PR, Hinman LM, Hollander I, Beyer CF, Lindh D, Holcomb R et al. Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 2002; 13: 47–58.

    Article  CAS  PubMed  Google Scholar 

  5. Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem 2002; 13: 40–46.

    Article  CAS  PubMed  Google Scholar 

  6. Sievers EL, Larson RA, Stadtmauer EA, Estey E, Löwenberg B, Dombret H, et al, for the Mylotarg Study Group. Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 2001; 19: 3244–3254.

    Article  CAS  PubMed  Google Scholar 

  7. Larson RA, Boogaerts M, Estey E, Karanes C, Stadtmauer EA, Sievers EL et al. Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 2002; 16: 1627–1636.

    Article  CAS  PubMed  Google Scholar 

  8. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L et al. Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 2001; 7: 1490–1496.

    CAS  PubMed  Google Scholar 

  9. Giles F, Estey E, O'Brien S . Gemtuzumab ozogamicin in the treatment of acute myeloid leukemia. Cancer 2003; 98: 2095–2104.

    Article  CAS  PubMed  Google Scholar 

  10. de Vetten MP, Jansen JH, van der Reijden BA, Berger MS, Zijlmans JM, Lowenberg B . Molecular remission of Philadelphia/bcr-abl-positive acute myeloid leukaemia after treatment with anti-CD33 calicheamicin conjugate (gemtuzumab ozogamicin, CMA-676). Br J Haematol 2000; 111: 277–279.

    Article  CAS  PubMed  Google Scholar 

  11. Estey EH, Giles FJ, Beran M, O'Brien S, Pierce SA, Faderl SH et al. Experience with gemtuzumab ozogamycin (‘mylotarg’) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002; 99: 4222–4224.

    Article  CAS  PubMed  Google Scholar 

  12. Estey EH, Thall PF, Giles FJ, Wang XM, Cortes JE, Beran M et al. Gemtuzumab ozogamicin with or without interleukin 11 in patients 65 years of age or older with untreated acute myeloid leukemia and high-risk myelodysplastic syndrome: comparison with idarubicin plus continuous-infusion, high-dose cytosine arabinoside. Blood 2002; 99: 4343–4349.

    Article  CAS  PubMed  Google Scholar 

  13. Cohen AD, Luger SM, Sickles C, Mangan PA, Porter DL, Schuster SJ et al. Gemtuzumab ozogamicin (Mylotarg) monotherapy for relapsed AML after hematopoietic stem cell transplant: efficacy and incidence of hepatic veno-occlusive disease. Bone Marrow Transplant 2002; 30: 23–28.

    Article  CAS  PubMed  Google Scholar 

  14. Apostolidou E, Cortes J, Tsimberidou A, Estey E, Kantarjian H, Giles FJ . Pilot study of gemtuzumab ozogamicin, liposomal daunorubicin, cytarabine and cyclosporine regimen in patients with refractory acute myelogenous leukemia. Leuk Res 2003; 27: 887–891.

    Article  CAS  PubMed  Google Scholar 

  15. Tsimberidou A, Cortes J, Thomas D, Garcia-Manero G, Verstovsek S, Faderl S et al. Gemtuzumab ozogamicin, fludarabine, cytarabine and cyclosporine combination regimen in patients with CD33+ primary resistant or relapsed acute myeloid leukemia. Leuk Res 2003; 27: 893–897.

    Article  CAS  PubMed  Google Scholar 

  16. Tsimberidou A, Estey E, Cortes J, Thomas D, Faderl S, Verstovsek S et al. Gemtuzumab, fludarabine, cytarabine, and cyclosporine in patients with newly diagnosed acute myelogenous leukemia or high-risk myelodysplastic syndromes. Cancer 2003; 97: 1481–1487.

    Article  CAS  PubMed  Google Scholar 

  17. Kell WJ, Burnett AK, Chopra R, Yin JA, Clark RE, Rohatiner A et al. A feasibility study of simultaneous administration of gemtuzumab ozogamicin with intensive chemotherapy in induction and consolidation in younger patients with acute myeloid leukemia. Blood 2003; 102: 4277–4283.

    Article  CAS  PubMed  Google Scholar 

  18. Zwaan CM, Reinhardt D, Corbacioglu S, van Wering ER, Bokkerink JP, Tissing WJ et al. Gemtuzumab ozogamicin: first clinical experiences in children with relapsed/refractory acute myeloid leukemia treated on compassionate-use basis. Blood 2003; 101: 3868–3871.

    Article  CAS  PubMed  Google Scholar 

  19. Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001; 92: 406–413.

    Article  CAS  PubMed  Google Scholar 

  20. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB . Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002; 99: 2310–2314.

    Article  CAS  PubMed  Google Scholar 

  21. Wadleigh M, Richardson PG, Zahrieh D, Lee SJ, Cutler C, Ho V et al. Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003; 102: 1578–1582.

    Article  CAS  PubMed  Google Scholar 

  22. Naito K, Takeshita A, Shigeno K, Nakamura S, Fujisawa S, Shinjo K et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 2000; 14: 1436–1443.

    Article  CAS  PubMed  Google Scholar 

  23. Linenberger ML, Hong T, Flowers D, Sievers EL, Gooley TA, Bennett JM et al. Multidrug-resistance phenotype and clinical responses to gemtuzumab ozogamicin. Blood 2001; 98: 988–994.

    Article  CAS  PubMed  Google Scholar 

  24. Matsui H, Takeshita A, Naito K, Shinjo K, Shigeno K, Maekawa M et al. Reduced effect of gemtuzumab ozogamicin (CMA-676) on P-glycoprotein and/or CD34-positive leukemia cells and its restoration by multidrug resistance modifiers. Leukemia 2002; 16: 813–819.

    Article  CAS  PubMed  Google Scholar 

  25. Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML . Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 2003; 102: 1466–1473.

    Article  CAS  PubMed  Google Scholar 

  26. Amico D, Barbui AM, Erba E, Rambaldi A, Introna M, Golay J . Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: role of Chk1 and Chk2 phosphorylation and caspase 3. Blood 2003; 101: 4589–4597.

    Article  CAS  PubMed  Google Scholar 

  27. Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE . The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood 2004; 103: 4276–4284.

    Article  CAS  PubMed  Google Scholar 

  28. Jedema I, Barge RM, van der Velden VH, Nijmeijer BA, van Dongen JJ, Willemze R et al. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 2004; 18: 316–325.

    Article  CAS  PubMed  Google Scholar 

  29. van der Velden VHJ, Boeckx N, Jedema I, te Marvelde JG, Hoogeveen PG, Boogaerts M et al. High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin (Mylotarg) treatment in acute myeloid leukemia patients. Leukemia 2004; 18: 983–988.

    Article  CAS  PubMed  Google Scholar 

  30. van der Velden VHJ, te Marvelde JG, Hoogeveen PG, Bernstein ID, Houtsmuller AB, Berger AS et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001; 97: 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  31. Freeman SD, Kelm S, Barber EK, Crocker PR . Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 1995; 85: 2005–2012.

    CAS  PubMed  Google Scholar 

  32. Crocker PR . Siglecs: sialic-acid-binding immunoglobulin-like lectins in cell–cell interactions and signalling. Curr Opin Struct Biol 2002; 12: 609–615.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor VC, Buckley CD, Douglas M, Cody AJ, Simmons DL, Freeman SD . The myeloid-specific sialic acid-binding receptor, CD33, associates with the protein-tyrosine phosphatases, SHP-1 and SHP-2. J Biol Chem 1999; 274: 11505–11512.

    Article  CAS  PubMed  Google Scholar 

  34. Ulyanova T, Blasioli J, Woodford-Thomas TA, Thomas ML . The sialoadhesin CD33 is a myeloid-specific inhibitory receptor. Eur J Immunol 1999; 29: 3440–3449.

    Article  CAS  PubMed  Google Scholar 

  35. Paul SP, Taylor LS, Stansbury EK, McVicar DW . Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 2000; 96: 483–490.

    CAS  PubMed  Google Scholar 

  36. Balaian L, Ball ED . Direct effect of bispecific anti-CD33 × anti-CD64 antibody on proliferation and signaling in myeloid cells. Leuk Res 2001; 25: 1115–1125.

    Article  CAS  PubMed  Google Scholar 

  37. Balaian L, Zhong R-k, Ball ED . The inhibitory effect of anti-CD33 monoclonal antibodies on AML cell growth correlates with the Syk and/or ZAP-70 expression. Exp Hematol 2003; 31: 363–371.

    Article  CAS  PubMed  Google Scholar 

  38. Andrews RG, Torok-Storb B, Bernstein ID . Myeloid-associated differentiation antigens on stem cells and their progeny identified by monoclonal antibodies. Blood 1983; 62: 124–132.

    CAS  PubMed  Google Scholar 

  39. Griffin JD, Linch D, Sabbath K, Larcom P, Schlossman SF . A monoclonal antibody reactive with normal and leukemic human myeloid progenitor cells. Leuk Res 1984; 8: 521–534.

    Article  CAS  PubMed  Google Scholar 

  40. Brendel C, Neubauer A . Characteristics and analysis of normal and leukemic stem cells: current concepts and future directions. Leukemia 2000; 14: 1711–1717.

    Article  CAS  PubMed  Google Scholar 

  41. Dinndorf PA, Andrews RG, Benjamin D, Ridgway D, Wolff L, Bernstein ID . Expression of normal myeloid-associated antigens by acute leukemia cells. Blood 1986; 67: 1048–1053.

    CAS  PubMed  Google Scholar 

  42. Jilani I, Estey E, Huh Y, Joe Y, Manshouri T, Yared M et al. Differences in CD33 intensity between various myeloid neoplasms. Am J Clin Pathol 2002; 118: 560–566.

    Article  PubMed  Google Scholar 

  43. Leone G, Rutella S, Voso MT, Fianchi L, Scardocci A, Pagano L . In vivo priming with granulocyte colony-stimulating factor possibly enhances the effect of gemtuzumab-ozogamicin in acute myeloid leukemia: results of a pilot study. Haematologica 2004; 89: 634–636.

    CAS  PubMed  Google Scholar 

  44. Bonnet D, Dick JE . Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730–737.

    Article  CAS  PubMed  Google Scholar 

  45. Bernstein ID . Monoclonal antibodies to the myeloid stem cells: therapeutic implications of CMA-676, a humanized anti-CD33 antibody calicheamicin conjugate. Leukemia 2000; 14: 474–475.

    Article  CAS  PubMed  Google Scholar 

  46. Dowell JA, Korth-Bradley J, Liu H, King SP, Berger MS . Pharmacokinetics of gemtuzumab ozogamicin, an antibody-targeted chemotherapy agent for the treatment of patients with acute myeloid leukemia in first relapse. J Clin Pharmacol 2001; 41: 1206–1214.

    Article  CAS  PubMed  Google Scholar 

  47. Sievers EL, Appelbaum FR, Spielberger RT, Forman SJ, Flowers D, Smith FO et al. Selective ablation of acute myeloid leukemia using antibody-targeted chemotherapy: a phase I study of an anti-CD33 calicheamicin immunoconjugate. Blood 1999; 93: 3678–3684.

    CAS  PubMed  Google Scholar 

  48. Korth-Bradley JM, Dowell JA, King SP, Liu H, Berger MS . Impact of age and gender on the pharmacokinetics of gemtuzumab ozogamicin. Pharmacotherapy 2001; 21: 1175–1180.

    Article  CAS  PubMed  Google Scholar 

  49. Caron PC, Dumont L, Scheinberg DA . Supersaturating infusional humanized anti-CD33 monoclonal antibody HuM195 in myelogenous leukemia. Clin Cancer Res 1998; 4: 1421–1428.

    CAS  PubMed  Google Scholar 

  50. Feldman E, Kalaycio M, Weiner G, Frankel S, Schulman P, Schwartzberg L et al. Treatment of relapsed or refractory acute myeloid leukemia with humanized anti-CD33 monoclonal antibody HuM195. Leukemia 2003; 17: 314–318.

    Article  CAS  PubMed  Google Scholar 

  51. Appelbaum FR . Antibody-targeted therapy for myeloid leukemia. Semin Hematol 1999; 36: 2–8.

    CAS  PubMed  Google Scholar 

  52. Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 1991; 9: 478–490.

    Article  CAS  PubMed  Google Scholar 

  53. van der Jagt RHC, Badger CC, Appelbaum FR, Press OW, Matthews DC, Eary JF et al. Localization of radiolabeled antimyeloid antibodies in a human acute leukemia xenograft tumor model. Cancer Res 1992; 52: 89–94.

    CAS  PubMed  Google Scholar 

  54. Press OW, Shan D, Howell-Clark J, Eary J, Appelbaum FR, Matthews D et al. Comparative metabolism and retention of iodine-125, yttrium-90, and indium-111 radioimmunoconjugates by cancer cells. Cancer Res 1996; 56: 2123–2129.

    CAS  PubMed  Google Scholar 

  55. McGrath MS, Rosenblum MG, Philips MR, Scheinberg DA . Immunotoxin resistance in multidrug resistant cells. Cancer Res 2003; 63: 72–79.

    CAS  PubMed  Google Scholar 

  56. Lee MD, Dunne TS, Siegel MM, Chang CC, Morton GO, Borders DB . Calichemicins, a novel family of antitumor antibiotics. 1. Chemistry and partial structure of calichemicin-gamma-1. J Am Chem Soc 1987; 109: 3464–3466.

    Article  CAS  Google Scholar 

  57. Damle NK, Frost P . Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr Opin Pharmacol 2003; 3: 386–390.

    Article  CAS  PubMed  Google Scholar 

  58. Zein N, Sinha AM, McGahren WJ, Ellestad GA . Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988; 240: 1198–1201.

    Article  CAS  PubMed  Google Scholar 

  59. Myers AG, Cohen SB, Kwon BM . A study of the reaction of calicheamicin gamma(1) with glutathione in the presence of double-stranded DNA. J Am Chem Soc 1994; 116: 1255–1277.

    Article  CAS  Google Scholar 

  60. Elmroth K, Nygren J, Mårtensson S, Ismail HI, Hammarsten O . Cleavage of cellular DNA by calicheamicin gamma1. DNA Repair 2003; 2: 363–374.

    Article  CAS  PubMed  Google Scholar 

  61. Walker S, Landovitz R, Ding WD, Ellestad GA, Kahne D . Cleavage behavior of calicheamicin gamma 1 and calicheamicin T. Proc Natl Acad Sci USA 1992; 89: 4608–4612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Krishnamurthy G, Brenowitz MD, Ellestad GA . Salt dependence of calicheamicin-DNA site-specific interactions. Biochemistry 1995; 34: 1001–1010.

    Article  CAS  PubMed  Google Scholar 

  63. Zhao B, Konno S, Wu JM, Oronsky AL . Modulation of nicotinamide adenine dinucleotide and poly (adnosine diphosphoribose) metabolism by calicheamicin gamma 1 in human HL-60 cells. Cancer Lett 1990; 50: 141–147.

    Article  CAS  PubMed  Google Scholar 

  64. Battigello J-MA, Cui M, Roshong S, Carter BJ . Enediyne-mediated cleavage of RNA. Bioorg Med Chem 1995; 3: 839–849.

    Article  CAS  PubMed  Google Scholar 

  65. Mårtensson S, Nygren J, Osheroff N, Hammarsten O . Activation of the DNA-dependent protein kinase by drug-induced and radiation-induced DNA strand breaks. Radiat Res 2003; 160: 291–301.

    Article  PubMed  Google Scholar 

  66. Redon C, Pilch D, Rogakou E, Sedelnikova O, Newrock K, Bonner W . Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 2002; 12: 162–169.

    Article  CAS  PubMed  Google Scholar 

  67. Watanabe CMH, Supekova L, Schultz PG . Transcriptional effects of the potent enediyne anti-cancer agent Calicheamicin gamma(I)(1). Chem Biol 2002; 9: 245–251.

    Article  CAS  PubMed  Google Scholar 

  68. Prokop A, Wrasidlo W, Lode H, Herold R, Lang F, Henze G et al. Induction of apoptosis by enediyne antibiotic calicheamicin thetaII proceeds through a caspase-mediated mitochondrial amplification loop in an entirely Bax-dependent manner. Oncogene 2003; 22: 9107–9120.

    Article  CAS  PubMed  Google Scholar 

  69. Sullivan N, Lyne L . Sensitivity of fibroblasts derived from ataxia-telangiectasia patients to calicheamicin gamma 1I. Mutat Res 1990; 245: 171–175.

    Article  CAS  PubMed  Google Scholar 

  70. van Duijn-Goedhart A, Zdzienicka MZ, Sankaranarayanan K, van Buul PPW . Differential responses of Chinese hamster mutagen sensitive cell lines to low and high concentrations of calicheamicin and neocarzinostatin. Mutat Res 2000; 471: 95–105.

    Article  CAS  PubMed  Google Scholar 

  71. Swanton C . Cell-cycle targeted therapies. Lancet Oncol 2004; 5: 27–36.

    Article  CAS  PubMed  Google Scholar 

  72. Ueda K, Taguchi Y, Morishima M . How does P-glycoprotein recognize its substrates? Semin Cancer Biol 1997; 8: 151–159.

    Article  CAS  PubMed  Google Scholar 

  73. Durr FE, Wallace RE, Testa RT, Kuck NA . Biological activities of calicheamicin. In: Borders DB, Doyle TW (eds). Enediyne Antibiotics as Antitumor Agents. New York: Marcel Dekker, 1995, pp 127–136.

    Google Scholar 

  74. van der Kolk DM, de Vries EGE, Müller M, Vellenga E . The role of drug efflux pumps in acute myeloid leukemia. Leuk Lymphoma 2002; 43: 685–701.

    Article  CAS  PubMed  Google Scholar 

  75. Legrand O, Zittoun R, Marie J-P . Role of MRP1 in multidrug resistance in acute myeloid leukemia. Leukemia 1999; 13: 578–584.

    Article  CAS  PubMed  Google Scholar 

  76. Abbott BL . ABCG2 (BCRP) expression in normal and malignant hematopoietic cells. Hematol Oncol 2003; 21: 115–130.

    Article  PubMed  Google Scholar 

  77. Schwartz MA, Lovett DR, Redner A, Finn RD, Graham MC, Divgi CR et al. Dose-escalation trial of M195 labeled with iodine 131 for cytoreduction and marrow ablation in relapsed or refractory myeloid leukemias. J Clin Oncol 1993; 11: 294–303.

    Article  CAS  PubMed  Google Scholar 

  78. Berinstein NL, Grillo-Lopez AJ, White CA, Bence-Bruckler I, Maloney D, Czuczman M et al. Association of serum Rituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin's lymphoma. Ann Oncol 1998; 9: 995–1001.

    Article  CAS  PubMed  Google Scholar 

  79. Giles FJ, Vose JM, Do KA, Johnson MM, Manshouri T, Bociek G et al. Circulating CD20 and CD52 in patients with non-Hodgkin's lymphoma or Hodgkin's disease. Br J Haematol 2003; 123: 850–857.

    Article  CAS  PubMed  Google Scholar 

  80. Löwenberg B, Downing JR, Burnett A . Acute myeloid leukemia. N Engl J Med 1999; 341: 1051–1062.

    Article  PubMed  Google Scholar 

  81. Estey EH, Thall PF, Cortes JE, Giles FJ, O'Brien S, Pierce SA et al. Comparison of idarubicin+ara-C-, fludarabine+ara-C-, and topotecan+ara-C-based regimens in treatment of newly diagnosed acute myeloid leukemia, refractory anemia with excess blasts in transformation, or refractory anemia with excess blasts. Blood 2001; 98: 3575–3583.

    Article  CAS  PubMed  Google Scholar 

  82. Byrd JC, Mrózek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  83. Tsimberidou AM, Estey E, Whitman GJ, Dryden MJ, Ratnam S, Pierce S et al. Extramedullary relapse in a patient with acute promyelocytic leukemia: successful treatment with arsenic trioxide, all-trans retinoic acid and gemtuzumab ozogamicin therapies. Leuk Res 2004; 28: 991–994.

    Article  PubMed  Google Scholar 

  84. Lo-Coco F, Cimino G, Breccia M, Noguera NI, Diverio D, Finolezzi E et al. Gentuzumab ozogamicin (‘mylotarg’) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 2004; 104: 1995–1999.

    Article  CAS  PubMed  Google Scholar 

  85. Candoni A, Damiani D, Michelutti A, Masolini P, Michieli M, Michelutti T et al. Clinical characteristics, prognostic factors and multidrug-resistance related protein expression in 36 adult patients with acute promyelocytic leukemia. Eur J Haematol 2003; 71: 1–8.

    Article  CAS  PubMed  Google Scholar 

  86. Amadori S, Suciu S, Willemze R, Mandelli F, Selleslag D, Stauder R et al. EORTC leukemia group; GIMEMA leukemia group. Sequential administration of gemtuzumab ozogamicin and conventional chemotherapy as first line therapy in elderly patients with acute myeloid leukemia: a phase II study (AML-15) of the EORTC and GIMEMA leukemia groups. Haematologica 2004; 89: 950–956.

    CAS  PubMed  Google Scholar 

  87. Piccaluga PP, Martinelli G, Rondoni M, Malagola M, Gaitani S, Visani G et al. First experience with gemtuzumab ozogamicin plus cytarabine as continuous infusion for elderly acute myeloid leukaemia patients. Leuk Res 2004; 28: 987–990.

    Article  CAS  PubMed  Google Scholar 

  88. Tsimberidou AM, Estey E, Cortes JE, Garcia-Manero G, Faderl S, Verstovsek S et al. Mylotarg, fludarabine, cytarabine (ara-C), and cyclosporine (MFAC) regimen as post-remission therapy in acute myelogenous leukemia. Cancer Chemother Pharmacol 2003; 52: 449–452.

    Article  CAS  PubMed  Google Scholar 

  89. Nabhan C, Rundhaugen L, Jatoi M, Riley MB, Boehlke L, Peterson LC et al. Gemtuzumab ozogamicin (MylotargTM) is infrequently associated with sinusoidal obstructive syndrome/veno-occlusive disease. Ann Oncol 2004; 15: 1231–1236.

    Article  CAS  PubMed  Google Scholar 

  90. Zwaan CM, Reinhardt D, Jurgens H, Huismans DR, Hahlen K, Smith OP et al. Gemtuzumab ozogamicin in pediatric CD33-positive acute lymphoblastic leukemia: first clinical experiences and relation with cellular sensitivity to single agent calicheamicin. Leukemia 2003; 17: 468–470.

    Article  CAS  PubMed  Google Scholar 

  91. DiJoseph JF, Armellino DC, Boghaert ER, Khandke K, Dougher MM, Sridharan L et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood 2004; 103: 1807–1814.

    Article  CAS  PubMed  Google Scholar 

  92. Knoll K, Wrasidlo W, Scherberich JE, Gaedicke G, Fischer P . Targeted therapy of experimental renal cell carcinoma with a novel conjugate of monoclonal antibody 138H11 and calicheamicin theta11 . Cancer Res 2000; 60: 6089–6094.

    CAS  PubMed  Google Scholar 

  93. Chan SY, Gordon AN, Coleman RE, Hall JB, Berger MS, Sherman ML et al. A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Cancer Immunol Immunother 2003; 52: 243–248.

    CAS  PubMed  Google Scholar 

  94. Walter RB, Raden BW, Thompson J, Flowers DA, Kiem HP, Bernstein ID et al. Breast cancer resistance protein (BCRP/ABCG2) does not confer resistance to gemtuzumab ozogamicin and calicheamicin-gamma 1 in acute myeloid leukemia cells. Leukemia 2004; 18: 1914–1917.

    Article  CAS  PubMed  Google Scholar 

  95. Walter RB, Raden BW, Kamikura DM, Cooper JA, Bernstein ID . Influence of CD33 expression levels and ITIM-dependent internalization on gemtuzumab ozogamicin-induced cytotoxicity. Blood 2004; September 28 [E-pub ahead of print].

Download references

Acknowledgements

This work was supported by research funding from the Leukemia and Lymphoma Society (#7040-03). We thank Drs Roland Walter, Frederick Appelbaum and Deborah Banker for helpful discussions and review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M L Linenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linenberger, M. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 19, 176–182 (2005). https://doi.org/10.1038/sj.leu.2403598

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403598

Keywords

This article is cited by

Search

Quick links