Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Myelodysplasias

CD34+ marrow progenitors from MDS patients with high levels of intramedullary apoptosis have reduced expression of α4β1 and α5β1 integrins

Abstract

Excessive intramedullary apoptosis is central in the pathogenesis of myelodysplastic syndromes (MDS). Growth-inhibiting cytokines, the Fas/FasLigand pathway, and autoreactive cytotoxic T-lymphocytes have been identified to be important proapoptotic factors in MDS. In normal hematopoiesis, α4β1 and α5β1 integrin-mediated interactions between progenitors and fibronectin are critical for progenitor cell survival. In this study, we have used flow cytometry to quantify the expression levels of members of the β1 integrin family on CD34+ marrow progenitors in 27 untreated patients with MDS, three with s-AML, and 25 control subjects. In MDS, we observed that nonapoptotic progenitors significantly downregulate cell surface expression levels of α4 and β1 integrin chains compared with healthy controls. Downregulation of α4, β1, and also α5 was present in MDS patients with ≥25% apoptotic progenitors, irrespective of their French, American, British subcategory. Reduced cell surface expression levels of α4, α5, and β1 did also correlate with decreased in vitro adhesiveness to fibronectin fragments. Therefore, our observations suggest that downregulation of α4β1 and α5β1 integrins on CD34+ progenitors could be a newly identified proapoptotic mechanism in MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Eaves CJ, Cashman JD, Sutherland HJ, Otsuka T, Humphries RK, Hogge DE et al. Molecular analysis of primitive hematopoietic cell proliferation control mechanisms. Ann NY Acad Sci 1991; 628: 298–306.

    Article  CAS  PubMed  Google Scholar 

  2. Verfaillie C, Hurley R, Bhatia R, McCarthy JB . Role of bone marrow matrix in normal and abnormal hematopoiesis. Crit Rev Oncol Hematol 1994; 16: 201–224.

    Article  CAS  PubMed  Google Scholar 

  3. Verfaillie CM . Adhesion receptors as regulators of the hematopoietic process. Blood 1998; 92: 2609–2612.

    CAS  PubMed  Google Scholar 

  4. Chan YH, Watt SM . Adhesion receptors on haematopoietic progenitor cells. Br J Haematol 2001; 112: 541–557.

    Article  CAS  PubMed  Google Scholar 

  5. Clark EA, Brugge JS . Integrins and signal transduction pathways: the road taken. Science 1995; 268: 233–239.

    Article  CAS  PubMed  Google Scholar 

  6. Parise LV, Lee JW, Juliano RL . New aspects of integrin signaling in cancer. Semin Cancer Biol 2000; 10: 407–414.

    Article  CAS  PubMed  Google Scholar 

  7. Williams DA, Rios M, Stephens C, Patel VP . Fibronectin and VLA-4 in haematopoietic stem cell–microenvironment interactions. Nature 1991; 352: 438–441.

    Article  CAS  PubMed  Google Scholar 

  8. Verfaillie CM, McCarthy JB, McGlave PB . Differentiation of primitive human multipotent hematopoietic progenitors into single lineage clonogenic progenitors is accompanied by alteration in their interaction with fibronectin. J Exp Med 1991; 174: 693–703.

    Article  CAS  PubMed  Google Scholar 

  9. Hurley RW, McCarthy JB, Verfaillie CM . Direct adhesion to bone marrow stroma via fibronectin receptors inhibits hematopoietic progenitor proliferation. J Clin Invest 1995; 96: 511–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Z, Vuori K, Reed JC, Ruoslahti E . The α5β1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 1995; 92: 6161–6165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang MW, Consoli U, Lane CM, Durett A, Lauppe MJ, Champlin R et al. Rescue from apoptosis in early (CD34-selected) versus late (non-CD34-selected) human hematopoietic cells by very late antigen 4- and vascular cell adhesion molecule (VCAM)1-dependent adhesion to bone marrow stromal cells. Cell Growth Differ 1998; 9: 105–112.

    CAS  PubMed  Google Scholar 

  12. Hurley RW, McCarthy JB, Wayner EA, Verfaillie CM . Monoclonal antibody crosslinking of the α4 or β1 integrin inhibits committed clonogenic hematopoietic progenitor proliferation. Exp Hematol 1997; 25: 321–328.

    CAS  PubMed  Google Scholar 

  13. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A et al. Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukaemia. Nat Med 2003; 9: 1158–1165.

    Article  CAS  PubMed  Google Scholar 

  14. Bendall LJ, Makrynikola V, Hutchinson A, Bianchi AC, Bradstock KF, Gottlieb DJ . Stem cell factor enhances the adhesion of AML cells to fibronectin and augments fibronectin-mediated anti-apoptotic and proliferative signals. Leukemia 1998; 12: 1375–1382.

    Article  CAS  PubMed  Google Scholar 

  15. Mudry RE, Fortney JE, York T, Hall BM, Gibson LF . Stromal cells regulate survival of B-lineage leukemic cells during chemotherapy. Blood 2000; 96: 1926–1932.

    CAS  PubMed  Google Scholar 

  16. Bhatia R, Munthe HA, Verfaillie CM . Role of abnormal integrin-cytoskeletal interaction in impaired β1 integrin function in chronic myelogenous leukemia hematopoietic progenitor cells. Exp Haematol 1999; 27: 1384–1396.

    Article  CAS  Google Scholar 

  17. De la Fuente MT, Casanova B, Garcia-Gila M, Silva A, Garcia-Pardo A . Fibronectin interaction with alpha4beta1 integrin prevents apoptosis in B cell chronic lymphocytic leukemia: correlation with Bcl-2 and Bax. Leukemia 1999; 13: 266–274.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshida Y . Hypothesis: apoptosis may be the mechanism responsible for the premature intramedullary cell death in the myelodysplastic syndrome. Leukemia 1993; 7: 144–146.

    CAS  PubMed  Google Scholar 

  19. Raza A, Gezer S, Mundle S, Gao XZ, Alvi S, Borok R et al. Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 1995; 86: 268–276.

    CAS  PubMed  Google Scholar 

  20. Delforge M . Understanding the pathogenesis of myelodysplastic syndromes. Hematol J 2003; 4: 303–309.

    Article  PubMed  Google Scholar 

  21. Willman CL . Molecular genetic features of myelodysplastic syndromes (MDS). Leukemia 1998; 12: S2–S6.

    CAS  PubMed  Google Scholar 

  22. Kitagawa M, Saito I, Kuwata T, Yoshida S, Yamaguchi S et al. Overexpression of tumor necrosis factor (TNF)- α and interferon (IFN)-γ by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 1997; 11: 2049–2054.

    Article  CAS  PubMed  Google Scholar 

  23. Bouscary D, De Vos J, Guesnu M, Jondeau K, Viguier F, Melle J et al. Fas/Apo-1(CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 1997; 11: 839–845.

    Article  CAS  PubMed  Google Scholar 

  24. Sloand EM, Kim S, Fuhrer M, Risitano AM, Nakamura R, Maciejewski JP et al. Fas-mediated apoptosis is important in regulating cell replication and death in trisomy 8 hematopoietic cells but not in cells with other cytogenetic abnormalities. Blood 2002; 100: 4427–4432.

    Article  CAS  PubMed  Google Scholar 

  25. Watson JV . A brief history of numbers and statistics with cytometric applications. Cytometry 2001; 46: 1–22.

    Article  CAS  PubMed  Google Scholar 

  26. Parker JE, Mufti GJ, Rasool F, Mijovic A, Devereux S, Pagliuca A . The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 2000; 96: 3932–3938.

    CAS  PubMed  Google Scholar 

  27. Greenberg PL . Apoptosis and its role in the myelodysplastic syndromes: implications for disease natural history and treatment. Leukemia Res 1998; 22: 1123–1136.

    Article  CAS  Google Scholar 

  28. Merchant SH, Gonchoroff NJ, Hutchison RE . Apoptotic index by Annexin V flow cytometry: adjunct to morphologic and cytogenetic diagnosis of myelodysplastic syndromes. Cytometry 2001; 46: 28–32.

    Article  CAS  PubMed  Google Scholar 

  29. Frish SM, Francis H . Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol 1994; 124: 619–626.

    Article  Google Scholar 

  30. Raza A, Alvi S, Borok RZ, Span L, Parcharidou A, Alston D et al. Excessive proliferation matched by excessive apoptosis in myelodysplastic syndromes: the cause-effect relationship. Leukemia Lymphoma 1997; 27: 111–118.

    Article  CAS  PubMed  Google Scholar 

  31. Mazzone A, Porta C, Fossati G, Gritti D, Mazzucchelli I, Ricevuti G . Granulocyte dysplasia and dysfunction, and CD11/CD18 defects in myelodysplastic syndromes. Leukemia Lymphoma 1996; 23: 267–275.

    Article  CAS  PubMed  Google Scholar 

  32. Maynadié M, Picard F, Husson B, Chatelain B, Cornet Y, Le Roux G et al. Groupe d'Etude Immunologique des Leucemies (GEIL). Immunophenotypic clustering of myelodysplastic syndromes. Blood 2002; 100: 2349–23565.

    Article  PubMed  Google Scholar 

  33. Lévesque JP, Leavesley DI, Niutta S, Vadas M, Simmons PJ . Cytokines increase human hematopoietic cell adhesiveness by activation of very late antigen (VLA)-4 and VLA-5 integrins. J Exp Med 1995; 181: 1805–1815.

    Article  PubMed  Google Scholar 

  34. Shetty V, Mundle S, Alvi S, Showel M, Broady-Robinson L, Dar S et al. Measurement of apoptosis, proliferation and three cytokines in 46 patients with myelodysplastic syndromes. Leuk Res 1996; 20: 891–900.

    Article  CAS  PubMed  Google Scholar 

  35. Allampallam K, Shetty V, Hussaini S, Mazzoran L, Zorat F, Huang R et al. Measurement of mRNA expression for a variety of cytokines and its receptors in bone marrows of patients with myelodysplastic syndromes. Anticancer Res 1999; 19: 5323–5328.

    CAS  PubMed  Google Scholar 

  36. Defilippi P, Truffa G, Stefanuto G, Altruda F, Silengo L, Tarone G . Tumor necrosis factor α and interferon γ modulate the expression of the vitronectin receptor (integrin β3) in human endothelial cells. J Biol Chem 1991; 266: 7638–7645.

    CAS  PubMed  Google Scholar 

  37. Asano H, Ohashi H, Ichihara M, Kinoshita T, Murate T, Kobayashi M et al. Evidence for nonclonal hematopoietic progenitor cell populations in bone marrow of patients with myelodysplastic syndromes. Blood 1994; 4: 588–594.

    Google Scholar 

  38. Delforge M, Demuynck H, Verhoef G, Vandenberghe P, Zachee P, Maertens J et al. Patients with high-risk myelodysplastic syndrome can have polyclonal or clonal haemopoiesis in complete haematological remission. Br J Haematol 1998; 102: 486–494.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Delforge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delforge, M., Raets, V., Van Duppen, V. et al. CD34+ marrow progenitors from MDS patients with high levels of intramedullary apoptosis have reduced expression of α4β1 and α5β1 integrins. Leukemia 19, 57–63 (2005). https://doi.org/10.1038/sj.leu.2403551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403551

Keywords

This article is cited by

Search

Quick links