Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Molecular Targets For Therapy (MTT)
  • Published:

Molecular Targets for Therapy (MTT)

Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics

Abstract

We previously reported that favorable and poor prognostic chromosomal rearrangements in acute myeloid leukemia (AML) were associated with distinct levels of HOX expression. We have now analyzed HOX expression in 50 independent adult AML patients (median age=62 years), together with FLT3 and FLT3-ligand mRNA levels, and FLT3 mutation determination. By cluster analysis, we could divide AMLs into cases with low, intermediate and high HOX expression. Cases with high expression were uniquely restricted to a subset of AMLs with intermediate cytogenetics (P=0.0174). This subset has significantly higher levels of FLT3 expression and appears to have an increase of FLT3 mutations (44%), while CEBPα mutations were infrequent (6%). FLT3 mRNA levels were correlated with the expression of multiple HOX genes, whereas FLT3 mutations were correlated with HOXB3. In some cases, FLT3 was expressed at levels equivalent to GAPDH in the absence of genomic amplification. We propose that high HOX expression may be characteristically associated with a distinct biologic subset of AML. The apparent global upregulation of HOX expression could be due to growth-factor signaling or, alternatively, these patterns may reflect a particular stage of differentiation of the leukemic cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  2. Grimwade D, Walker H, Harrison G, Oliver F, Chatters S, Harrison CJ et al. The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial. Blood 2001; 98: 1312–1320.

    Article  CAS  PubMed  Google Scholar 

  3. Greer JM, Puetz J, Thomas KR, Capecchi MR . Maintenance of functional equivalence during paralogous Hox gene evolution. Nature 2000; 403: 661–665.

    Article  CAS  PubMed  Google Scholar 

  4. Borrow J, Shearman AM, Stanton Jr VP, Becher R, Collins T, Williams AJ et al. The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996; 12: 159–167.

    Article  CAS  PubMed  Google Scholar 

  5. Fujino T, Suzuki A, Ito Y, Ohyashiki K, Hatano Y, Miura I et al. Single-translocation and double-chimeric transcripts: detection of NUP98-HOXA9 in myeloid leukemias with HOXA11 or HOXA13 breaks of the chromosomal translocation t(7;11)(p15;p15). Blood 2002; 99: 1428–1433.

    Article  CAS  PubMed  Google Scholar 

  6. La Starza R, Trubia M, Crescenzi B, Matteucci C, Negrini M, Martelli MF et al. Human homeobox gene HOXC13 is the partner of NUP98 in adult acute myeloid leukemia with t(11;12)(p15;q13). Genes Chromosomes Cancer 2003; 36: 420–423.

    Article  CAS  PubMed  Google Scholar 

  7. Panagopoulos I, Isaksson M, Billstrom R, Strombeck B, Mitelman F, Johansson B . Fusion of the NUP98 gene and the homeobox gene HOXC13 in acute myeloid leukemia with t(11;12)(p15;q13). Genes Chromosomes Cancer 2003; 36: 107–112.

    Article  CAS  PubMed  Google Scholar 

  8. Taketani T, Taki T, Ono R, Kobayashi Y, Ida K, Hayashi Y . The chromosome translocation t(7;11)(p15;p15) in acute myeloid leukemia results in fusion of the NUP98 gene with a HOXA cluster gene, HOXA13, but not HOXA9. Genes Chromosomes Cancer 2002; 34: 437–443.

    Article  CAS  PubMed  Google Scholar 

  9. Taketani T, Taki T, Shibuya N, Kikuchi A, Hanada R, Hayashi Y . Novel NUP98-HOXC11 fusion gene resulted from a chromosomal break within exon 1 of HOXC11 in acute myeloid leukemia with t(11;12)(p15;q13). Cancer Res 2002; 62: 4571–4574.

    CAS  PubMed  Google Scholar 

  10. Taketani T, Taki T, Shibuya N, Ito E, Kitazawa J, Terui K et al. The HOXD11 gene is fused to the NUP98 gene in acute myeloid leukemia with t(2;11)(q31;p15). Cancer Res 2002; 62: 33–37.

    CAS  PubMed  Google Scholar 

  11. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, Higgins MJ, Shows TB, Aplan PD . NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998; 58: 4269–4273.

    CAS  PubMed  Google Scholar 

  12. Nakamura T, Largaespada DA, Shaughnessy Jr JD, Jenkins NA, Copeland NG . Cooperative activation of Hoxa and Pbx1-related genes in murine myeloid leukaemias. Nat Genet 1996; 12: 149–153.

    Article  CAS  PubMed  Google Scholar 

  13. Ayton PM, Cleary ML . Transformation of myeloid progenitors by MLL oncoproteins is dependent on Hoxa7 and Hoxa9. Genes Dev 2003; 17: 2298–2307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Drabkin HA, Parsy C, Ferguson K, Guilhot F, Lacotte L, Roy L et al. Quantitative HOX expression in chromosomally defined subsets of acute myelogenous leukemia. Leukemia 2002; 16: 186–195.

    Article  CAS  PubMed  Google Scholar 

  15. Thompson A, Quinn MF, Grimwade D, O'Neill CM, Ahmed MR, Grimes S et al. Global down-regulation of HOX gene expression in PML-RARalpha + acute promyelocytic leukemia identified by small-array real-time PCR. Blood 2003; 101: 1558–1565.

    Article  CAS  PubMed  Google Scholar 

  16. Debernardi S, Lillington DM, Chaplin T, Tomlinson S, Amess J, Rohatiner A et al. Genome-wide analysis of acute myeloid leukemia with normal karyotype reveals a unique pattern of homeobox gene expression distinct from those with translocation-mediated fusion events. Genes Chromosomes Cancer 2003; 37: 149–158.

    Article  CAS  PubMed  Google Scholar 

  17. Kottaridis PD, Gale RE, Frew ME, Harrison G, Langabeer SE, Belton AA et al. The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood 2001; 98: 1752–1759.

    Article  CAS  PubMed  Google Scholar 

  18. Bennett JM, Cato D, Daniel MT, Flandrin G, Galton DA, Gralnick HR et al. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British Cooperative Group. Ann Intern Med 1985; 103: 620–625.

    Article  CAS  PubMed  Google Scholar 

  19. Byrd JC, Mrozek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood 2002; 100: 4325–4336.

    Article  CAS  PubMed  Google Scholar 

  20. Preudhomme C, Sagot C, Boissel N, Cayuela JM, Tigaud I, de Botton S et al. Favorable prognostic significance of CEBPA mutations in patients with de novo acute myeloid leukemia: a study from the Acute Leukemia French Association (ALFA). Blood 2002; 100: 2717–2723.

    Article  CAS  PubMed  Google Scholar 

  21. Wodnar-Filipowicz A, Lyman SD, Gratwohl A, Tichelli A, Speck B, Nissen C . Flt3 ligand level reflects hematopoietic progenitor cell function in aplastic anemia and chemotherapy-induced bone marrow aplasia. Blood 1996; 88: 4493–4499.

    CAS  PubMed  Google Scholar 

  22. Haidar JH, Bazarbachi A, Mahfouz R, Haidar HA, Jaafar H, Daher R . Serum Flt3 ligand variation as a predictive indicator of hematopoietic stem cell mobilization. J Hematother Stem Cell Res 2002; 11: 533–538.

    Article  CAS  PubMed  Google Scholar 

  23. Crooks GM, Fuller J, Petersen D, Izadi P, Malik P, Pattengale PK et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood 1999; 94: 519–528.

    CAS  PubMed  Google Scholar 

  24. Thorsteinsdottir U, Kroon E, Jerome L, Blasi F, Sauvageau G . Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Mol Cell Biol 2001; 21: 224–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sauvageau G, Thorsteinsdottir U, Hough MR, Hugo P, Lawrence HJ, Largman C et al. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 1997; 6: 13–22.

    Article  CAS  PubMed  Google Scholar 

  26. Antonchuk J, Sauvageau G, Humphries RK . HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp Hematol 2001; 29: 1125–1134.

    Article  CAS  PubMed  Google Scholar 

  27. Kyba M, Perlingeiro RC, Daley GQ . HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 2002; 109: 29–37.

    Article  CAS  PubMed  Google Scholar 

  28. Weltermann A, Fonatsch C, Haas OA, Greinix HT, Kahls P, Mitterbauer G et al. Impact of cytogenetics on the prognosis of adults with de novo AML in first relapse. Leukemia 2004; 18: 293–302.

    Article  CAS  PubMed  Google Scholar 

  29. Hanson RD, Hess JL, Yu BD, Ernst P, van Lohuizen M, Berns A et al. Mammalian Trithorax and polycomb-group homologues are antagonistic regulators of homeotic development. Proc Natl Acad Sci USA 1999; 96: 14372–14377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beuchle D, Struhl G, Muller J . Polycomb group proteins and heritable silencing of Drosophila Hox genes. Development 2001; 128: 993–1004.

    CAS  PubMed  Google Scholar 

  31. Armstrong SA, Kung AL, Mabon ME, Silverman LB, Stam RW, Den Boer ML et al. Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell 2003; 3: 173–183.

    Article  CAS  PubMed  Google Scholar 

  32. Bilder D, Graba Y, Scott MP . Wnt and TGFbeta signals subdivide the AbdA Hox domain during Drosophila mesoderm patterning. Development 1998; 125: 1781–1790.

    CAS  PubMed  Google Scholar 

  33. Maloof JN, Whangbo J, Harris JM, Jongeward GD, Kenyon CA . Wnt signaling pathway controls hox gene expression and neuroblast migration in C elegans. Development 1999; 126: 37–49.

    CAS  PubMed  Google Scholar 

  34. McWhirter JR, Neuteboom ST, Wancewicz EV, Monia BP, Downing JR, Murre C . Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci USA 1999; 96: 11464–11469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. McWhirter JR, Goulding M, Weiner JA, Chun J, Murre C . A novel fibroblast growth factor gene expressed in the developing nervous system is a downstream target of the chimeric homeodomain oncoprotein E2A-Pbx1. Development 1997; 124: 3221–3232.

    CAS  PubMed  Google Scholar 

  36. Bertho JM, Chapel A, Loilleux S, Frick J, Aigueperse J, Gorin NC et al. CD135 (Flk2/Flt3) expression by human thymocytes delineates a possible role of FLT3-ligand in T-cell precursor proliferation and differentiation. Scand J Immunol 2000; 52: 53–61.

    Article  CAS  PubMed  Google Scholar 

  37. Mizuki M, Schwable J, Steur C, Choudhary C, Agrawal S, Sargin B et al. Suppression of myeloid transcription factors and induction of STAT response genes by AML-specific Flt3 mutations. Blood 2003; 101: 3164–3173.

    Article  CAS  PubMed  Google Scholar 

  38. Pineault N, Helgason CD, Lawrence HJ, Humphries RK . Differential expression of Hox, Meis1, and Pbx1 genes in primitive cells throughout murine hematopoietic ontogeny. Exp Hematol 2002; 30: 49–57.

    Article  CAS  PubMed  Google Scholar 

  39. Kawagoe H, Humphries RK, Blair A, Sutherland HJ, Hogge DE . Expression of HOX genes, HOX cofactors, and MLL in phenotypically and functionally defined subpopulations of leukemic and normal human hematopoietic cells. Leukemia 1999; 13: 687–698.

    Article  CAS  PubMed  Google Scholar 

  40. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999; 286: 531–537.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge support from L'Association pour la Recherche sur le Cancer (JR), La Ligue Nationale Contre le Cancer, Comité de la Vienne et de Charente-Maritime (JR) and the NIH National Cancer Institute (HD) CA97710-01. We thank those individuals who provided several helpful comments in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H A Drabkin.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roche, J., Zeng, C., Barón, A. et al. Hox expression in AML identifies a distinct subset of patients with intermediate cytogenetics. Leukemia 18, 1059–1063 (2004). https://doi.org/10.1038/sj.leu.2403366

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403366

Keywords

This article is cited by

Search

Quick links