Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

A novel recombinant bispecific single-chain antibody, bscWue-1 × CD3, induces T-cell-mediated cytotoxicity towards human multiple myeloma cells

Abstract

The development of antibody-based strategies for the treatment of multiple myeloma (MM) has been hampered so far by the fact that suitable plasma cell-specific surface antigens have been missing. However, recently a novel monoclonal antibody, designated Wue-1, has been generated that specifically recognizes normal and malignant human plasma cells. Therefore, Wue-1 is an interesting and promising candidate to develop novel immunotherapeutic strategies for the treatment of MM. One variant for an antibody-based strategy is the bispecific antibody approach. Recombinant bispecific single-chain (bsc) antibodies are especially interesting candidates because they show exceptional biological properties. We have generated a novel MM-directed recombinant bsc antibody, bscWue-1 × CD3, and analyzed the biological properties of this antibody using the MM cell line NCI-H929 and primary cells from the bone marrow of patients with MM. We were able to show that bscWue-1 × CD3 induces efficient and selective T-cell-mediated cell death of NCI-H929 cells and primary myeloma cells in nine out of 11 cases. The bscWue-1 × CD3 Ab is efficacious even at low E:T ratios, and with or without additional T-cell pre- or costimulation. Target cell lyses were specific for Wue-1 antigen-positive cells and could be blocked by the Wue-1 monoclonal antibody.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Bataille R, Harousseau JL . Multiple myeloma. N Engl J Med 1997; 336: 1657–1664.

    Article  CAS  PubMed  Google Scholar 

  2. Peest D, Deicher H, Coldewey R, Leo R, Bartl R, Bartels H et al. A comparison of polychemotherapy and melphalan/prednisone for primary remission induction and interferon-alpha for maintenance treatment in multiple myeloma A prospective trial of the German Myeloma Treatment Group. Eur J Cancer 1995; 31a: 146–151.

    Article  CAS  PubMed  Google Scholar 

  3. Attal M, Harousseau JL, Stoppa AM, Sotto JJ, Fuzibet JG, Rossi JF et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. Intergroupe Francais du Myelome. N Engl J Med 1996; 335: 91–97.

    Article  CAS  PubMed  Google Scholar 

  4. Hallek M, Leif Bergsagel P, Anderson KC . Multiple myeloma: increasing evidence for a multistep transformation process. Blood 1998; 91: 3–21.

    CAS  PubMed  Google Scholar 

  5. Massaia M, Borrione P, Battaglio S, Mariani S, Beggiato E, Napoli P et al. Idiotype vaccination in human myeloma: generation of tumor-specific immune responses after high-dose chemotherapy. Blood 1999; 94: 673–683.

    CAS  PubMed  Google Scholar 

  6. Reichardt VL, Okada CY, Liso A, Benike CJ, Stockerl Goldstein KE, Engleman EG et al. Idiotype vaccination using dendritic cells after autologous peripheral blood stem cell transplantation for multiple myeloma–a feasibility study. Blood 1999; 93: 2411–2419.

    CAS  PubMed  Google Scholar 

  7. McLaughlin P, Grillo Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol 1998; 16: 2825–2833.

    Article  CAS  PubMed  Google Scholar 

  8. Maloney DG, Liles TM, Czerwinski DK, Waldichuk C, Rosenberg J, Grillo LA, Levy R . Phase I clinical trial using escalating single-dose infusion of chimeric anti-CD20 monoclonal antibody (IDEC-C2B8) in patients with recurrent B-cell lymphoma. Blood 1994; 84: 2457–2466.

    CAS  PubMed  Google Scholar 

  9. Coiffier B, Lepage E, Briere J, Herbrecht R, Tilly H, Bouabdallah R et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. N Engl J Med 2002; 346: 235–242.

    Article  CAS  PubMed  Google Scholar 

  10. Maloney DG, Donovan K, Hamblin TJ . Antibody therapy for treatment of multiple myeloma. Semin Hematol 1999; 36: 30–33.

    CAS  PubMed  Google Scholar 

  11. Treon SP, Shima Y, Grossbard ML, Preffer FI, Belch AR, Pilarski LM, Anderson KC . Treatment of multiple myeloma by antibody mediated immunotherapy and induction of myeloma selective antigens. Ann Oncol 2000; 11 (Suppl 1): 107–111.

    Article  PubMed  Google Scholar 

  12. Greiner A, Neumann M, Stingl S, Wassink S, Marx A, Riechert F et al. Characterization of Wue-1, a novel monoclonal antibody that stimulates the growth of plasmacytoma cells. Virchows Arch 2000; 437: 372–379.

    Article  CAS  PubMed  Google Scholar 

  13. Alessio M, Roggero S, Funaro A, De Monte LB, Peruzzi L, Geuna M et al. CD38 molecule: structural and biochemical analysis on human T lymphocytes, thymocytes, and plasma cells. J Immunol 1990; 145: 878–884.

    CAS  PubMed  Google Scholar 

  14. Rees RC . MHC restricted and non-restricted killer lymphocytes. Blood Rev 1990; 4: 204–210.

    Article  CAS  PubMed  Google Scholar 

  15. Vooijs WC, Post J, Wijdenes J, Schuurman HJ, Bolognesi A, Polito L et al. Efficacy and toxicity of plasma-cell-reactive monoclonal antibodies B-B2 and B-B4 and their immunotoxins. Cancer Immunol Immunother 1996; 42: 319–328.

    Article  CAS  PubMed  Google Scholar 

  16. Ohtomo T, Sugamata Y, Ozaki Y, Ono K, Yoshimura Y, Kawai S et al. Molecular cloning and characterization of a surface antigen preferentially overexpressed on multiple myeloma cells. Biochem Biophys Res Commun 1999; 258: 583–591.

    Article  CAS  PubMed  Google Scholar 

  17. Demanet C, Brissinck J, De Jonge J, Thielemans K . Bispecific antibody-mediated immunotherapy of the BCL1 lymphoma: increased efficacy with multiple injections and CD28-induced costimulation. Blood 1996; 87: 4390–4398.

    CAS  PubMed  Google Scholar 

  18. Haagen IA, Geerars AJ, de Lau WB, Bast BJ, de Gast BC . The efficacy of CD3 × CD19 bispecific monoclonal antibody (BsAb) in a clonogenic assay: the effect of repeated addition of BsAb and interleukin-2. Blood 1995; 85: 3208–3212.

    CAS  PubMed  Google Scholar 

  19. Honeychurch J, Tutt AL, Valerius T, Heijnen IA, Van De Winkel JG, Glennie MJ . Therapeutic efficacy of FcgammaRI/CD64-directed bispecific antibodies in B-cell lymphoma. Blood 2000; 96: 3544–3552.

    CAS  PubMed  Google Scholar 

  20. Daniel PT, Kroidl A, Kopp J, Sturm I, Moldenhauer G, Dörken B et al. Immunotherapy of B-cell lymphoma with CD3 × 19 bispecific antibodies: costimulation via CD28 prevents ‘veto’ apoptosis of antibody-targeted cytotoxic T cells. Blood 1998; 92: 4750–4757.

    CAS  PubMed  Google Scholar 

  21. Nitta T, Sato K, Yagita H, Okumura K, Ishii S . Preliminary trial of specific targeting therapy against malignant glioma. Lancet 1990; 335: 368–371.

    Article  CAS  PubMed  Google Scholar 

  22. Canevari S, Stoter G, Arienti F, Bolis G, Colnaghi MI, Di Re EM et al. Regression of advanced ovarian carcinoma by intraperitoneal treatment with autologous T lymphocytes retargeted by a bispecific monoclonal antibody. J Natl Cancer Inst 1995; 87: 1463–1469.

    Article  CAS  PubMed  Google Scholar 

  23. De Gast GC, Van Houten AA, Haagen IA, Klein S, De Weger RA, Van Dijk A et al. Clinical experience with CD3 × CD19 bispecific antibodies in patients with B cell malignancies. J Hematother 1995; 4: 433–437.

    Article  CAS  PubMed  Google Scholar 

  24. Hartmann F, Renner C, Jung W, Deisting C, Juwana M, Eichentopf B et al. Treatment of refractory Hodgkin's disease with an anti-CD16/CD30 bispecific antibody. Blood 1997; 89: 2042–2047.

    CAS  PubMed  Google Scholar 

  25. Borchmann P, Schnell R, Fuss I, Manzke O, Davis T, Lewis LD et al. Phase 1 trial of the novel bispecific molecule H22 × Ki-4 in patients with refractory Hodgkin lymphoma. Blood 2002; 100: 3101–3107.

    Article  CAS  PubMed  Google Scholar 

  26. Staerz UD, Bevan MJ . Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA 1986; 83: 1453–1457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lanzavecchia A, Scheidegger D . The use of hybrid hybridomas to target human cytotoxic T lymphocytes. Eur J Immunol 1987; 17: 105–111.

    Article  CAS  PubMed  Google Scholar 

  28. Kroesen BJ, ter HA, Spakman H, Willemse P, Sleijfer DT, de VE et al. Local antitumour treatment in carcinoma patients with bispecific-monoclonal-antibody-redirected T cells. Cancer Immunol Immunother 1993; 37: 400–407.

    Article  CAS  PubMed  Google Scholar 

  29. Zhu Z, Lewis GD, Carter P . Engineering high affinity humanized anti-p185HER2/anti-CD3 bispecific F(ab′)2 for efficient lysis of p185HER2 overexpressing tumor cells. Int J Cancer 1995; 62: 319–324.

    Article  CAS  PubMed  Google Scholar 

  30. Mallender WD, Voss EJ . Construction, expression, and activity of a bivalent bispecific single-chain antibody. J Biol Chem 1994; 269: 199–206.

    CAS  PubMed  Google Scholar 

  31. Mallender WD, Ferreira ST, Voss EJ, Coelho ST . Inter-active-site distance and solution dynamics of a bivalent-bispecific single-chain antibody molecule. Biochemistry 1994; 33: 10100–10108.

    Article  CAS  PubMed  Google Scholar 

  32. Kostelny SA, Cole MS, Tso JY . Formation of a bispecific antibody by the use of leucine zippers. J Immunol 1992; 148: 1547–1553.

    CAS  PubMed  Google Scholar 

  33. Gruber M, Schodin BA, Wilson ER, Kranz DM . Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed in Escherichia coli. J Immunol 1994; 152: 5368–5374.

    CAS  PubMed  Google Scholar 

  34. Mack M, Riethmuller G, Kufer P . A small bispecific antibody construct expressed as a functional single-chain molecule with high tumor cell cytotoxicity. Proc Natl Acad Sci USA 1995; 92: 7021–7025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mack M, Gruber R, Schmidt S, Riethmuller G, Kufer P . Biologic properties of a bispecific single-chain antibody directed against 17-1A (EpCAM) and CD3: tumor cell-dependent T cell stimulation and cytotoxic activity. J Immunol 1997; 158: 3965–3970.

    CAS  PubMed  Google Scholar 

  36. Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. Int J Cancer 2002; 100: 690–697.

    Article  CAS  PubMed  Google Scholar 

  37. Löffler A, Kufer P, Lutterbüse R, Zettl F, Daniel PT, Schwenkenbecher JM et al. A recombinant bispecific single-chain antibody, CD19 × CD3, induces rapid and high lymphoma-directed cytotoxicity by unstimulated T lymphocytes. Blood 2000; 95: 2098–2103.

    PubMed  Google Scholar 

  38. Löffler A, Gruen M, Wuchter C, Schriever F, Kufer P, Dreier T et al. Efficient elimination of chronic lymphocytic leukaemia B cells by autologous T cells with a bispecific anti-CD19/anti-CD3 single-chain antibody construct. Leukemia 2003; 17: 900–909.

    Article  PubMed  Google Scholar 

  39. Yokota T, Milenic DE, Whitlow M, Schlom J . Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res 1992; 52: 3402–3408.

    CAS  PubMed  Google Scholar 

  40. Orlandi R, Gussow DH, Jones PT, Winter G . Cloning immunoglobulin variable domains for expression by the polymerase chain reaction. Proc Natl Acad Sci USA 1989; 86: 3833–3837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dübel S, Breitling F, Fuchs P, Zewe M, Gotter S, Welschof M et al. Isolation of IgG antibody Fv-DNA from various mouse and rat hybridoma cell lines using the polymerase chain reaction with a simple set of primers. J Immunol Methods 1994; 175: 89–95.

    Article  PubMed  Google Scholar 

  42. Traunecker A, Lanzavecchia A, Karjalainen K . Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells. EMBO J 1991; 10: 3655–3659.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harris NL, Jaffe ES, Diebold J, Flandrin G, Muller-Hermelink HK, Vardiman J et al. World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues: report of the Clinical Advisory Committee Meeting – Airlie House, Virginia, November 1997. J Clin Oncol 1999; 17: 3835–3849.

    Article  CAS  PubMed  Google Scholar 

  44. Marx A, Kirchner T, Greiner A, Muller-Hermelink HK, Schalke B, Osborn M . Neurofilament epitopes in thymoma and antiaxonal autoantibodies in myasthenia gravis. Lancet 1992; 339: 707–708.

    Article  CAS  PubMed  Google Scholar 

  45. Fagerberg J, Yi Q, Gigliotti D, Harmenberg U, Ruden U et al. T-cell-epitope mapping of the idiotypic monoclonal IgG heavy and light chains in multiple myeloma. Int J Cancer 1999; 80: 671–680.

    Article  CAS  PubMed  Google Scholar 

  46. Kay N, Leong T, Kyle RA, Greipp P, Van Ness B, Bone N et al. Altered T cell repertoire usage in CD4 and CD8 subsets of multiple myeloma patients, a Study of the Eastern Cooperative Oncology Group (E9487). Leukemia Lymphoma 1999; 33: 127–133.

    Article  CAS  PubMed  Google Scholar 

  47. Bohlen H, Manzke O, Patel B, Moldenhauer G, Dörken B, von Fliedner V et al. Cytolysis of leukemic B-cells by T-cells activated via two bispecific antibodies. Cancer Res 1993; 53: 4310–4314.

    CAS  PubMed  Google Scholar 

  48. Manzke O, Berthold F, Huebel K, Tesch H, Diehl V, Bohlen H . CD3 × CD19 bispecific antibodies and CD28 bivalent antibodies enhance T-cell reactivity against autologous leukemic cells in pediatric B-ALL bone marrow. Int J Cancer 1999; 80: 715–722.

    Article  CAS  PubMed  Google Scholar 

  49. Haagen IA, van de Griend R, Clark M, Geerars A, Bast B, de Gast B . Killing of human leukaemia/lymphoma B cells by activated cytotoxic T lymphocytes in the presence of a bispecific monoclonal antibody (alpha CD3/alpha CD19). Clin Exp Immunol 1992; 90: 368–375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haagen IA, Geerars AJ, de Lau WB, Clark MR, van de Griend RJ, Bast BJ et al. Killing of autologous B-lineage malignancy using CD3 × CD19 bispecific monoclonal antibody in end stage leukemia and lymphoma. Blood 1994; 84: 556–563.

    CAS  PubMed  Google Scholar 

  51. Cochlovius B, Kipriyanov SM, Stassar MJ, Christ O, Schuhmacher J, Strauss G et al. Treatment of human B cell lymphoma xenografts with a CD3 × CD19 diabody and T cells. J Immunol 2000; 165: 888–895.

    Article  CAS  PubMed  Google Scholar 

  52. Bohlen H, Hopff T, Manzke O et al. Lysis of malignant B cells from patients with B-chronic lymphocytic leukemia by autologous T cells activated with CD3 × CD19 bispecific antibodies in combination with bivalent CD28 antibodies. Blood 1993; 82: 1803–1812.

    CAS  PubMed  Google Scholar 

  53. Bauer S, Renner C, Juwana JP, Held G, Ohnesorge S, Gerlach K et al. Immunotherapy of human tumors with T-cell-activating bispecific antibodies: stimulation of cytotoxic pathways in vivo. Cancer Res 1999; 59: 1961–1965.

    CAS  PubMed  Google Scholar 

  54. Treon SP, Shima Y, Preffer FI, Doss DS, Ellman L, Schlossman RL et al. Treatment of plasma cell dyscrasias by antibody-mediated immunotherapy. Semin Oncol 1999; 26: 97–106.

    CAS  PubMed  Google Scholar 

  55. Ozaki S, Kosaka M, Wakahara Y, Ozaki Y, Tsuchiya M, Koishihara Y et al. Humanized anti-HM1.24 antibody mediates myeloma cell cytotoxicity that is enhanced by cytokine stimulation of effector cells. Blood 1999; 93: 3922–3930.

    CAS  PubMed  Google Scholar 

  56. Ellis JH, Barber KA, Tutt A, Hale C, Lewis AP, Glennie MJ et al. Engineered anti-CD38 monoclonal antibodies for immunotherapy of multiple myeloma. J Immunol 1995; 155: 925–937.

    CAS  PubMed  Google Scholar 

  57. Post J, Vooijs WC, Bast BJ, De Gast GC . Efficacy of an anti-CD138 immunotoxin and doxorubicin on drug-resistant and drug-sensitive myeloma cells. Int J Cancer 1999; 83: 571–576.

    Article  CAS  PubMed  Google Scholar 

  58. Chiriva-Internati M, Wang Z, Salati E, Bumm K, Barlogie B, Lim SH . Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood 2002; 100: 961–965.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A Greiner, University of Würzburg (Germany), for providing the immunocytochemistry and immunohistochemistry data. This work was supported in part by the SFB 506 and SFB 456 grants from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hönemann, D., Kufer, P., Rimpler, M. et al. A novel recombinant bispecific single-chain antibody, bscWue-1 × CD3, induces T-cell-mediated cytotoxicity towards human multiple myeloma cells. Leukemia 18, 636–644 (2004). https://doi.org/10.1038/sj.leu.2403264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403264

Keywords

Search

Quick links