Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype

Abstract

Acute lymphoblastic leukemia (ALL) in infants under 1 year is strongly associated with translocations involving 11q23 (MLL gene), CD10-negative B-lineage (proB) immunophenotype, and poor outcome. The present study analyses the relationship between age, MLL rearrangements, proB-lineage, and in vitro drug resistance determined using the MTT assay. Compared to 425 children aged over 1 year with common/preB (c/preB) ALL, the 44 infants were highly resistant to steroids (for prednisolone (PRED) more than 580-fold, P=0.001) and L-asparaginase (L-ASP) (12-fold, P=0.001), but more sensitive to cytarabine (AraC) (1.9-fold, P=0.001) and 2-chlorodeoxyadenosine (2-CdA) (1.7-fold, P<0.001). No differences were found for vincristine, anthracyclines, thiopurines, epipodophyllotoxines, or 4-hydroperoxy (HOO)-ifosfamide. ProB ALL of all ages had a profile similar to infant ALL when compared with the group of c/preB ALL: relatively more resistant to L-ASP and PRED (and in addition thiopurines), and more sensitive to AraC and 2-CdA. Age was not related to cellular drug resistance within the proB ALL group (<1 year, n=32, vs 1 year, n=19), nor within the MLL-rearranged ALL (<1 year, n=34, vs 1 year, n=8). The translocation t(4;11)(q21;q23)-positive ALL cases were more resistant to PRED (>7.4-fold, P=0.033) and 4-HOO-ifosfamide (4.4-fold, P=0.006) than those with other 11q23 abnormalities. The expression of P-glycoprotein, multidrug-resistance protein, and lung-resistance protein (LRP) was not higher in infants compared to older c/preB ALL patients, but LRP was higher in proB ALL and MLL-rearranged ALL of all ages. In conclusion, infants with ALL appear to have a distinct in vitro resistance profile with the proB immunophenotype being of importance. The role of MLL cannot be excluded, with the t(4;11) being of special significance, while age appears to play a smaller role.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Biondi A, Cimino G, Pieters R, Pui CH . Biological and therapeutic aspects of infant leukemia. Blood 2000; 96: 24–33.

    CAS  PubMed  Google Scholar 

  2. Pui CH, Gaynon PS, Boyett JM, Chessells JM, Baruchel A, Kamps W et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359: 1909–1915.

    Article  Google Scholar 

  3. Rubnitz JE, Behm FG, Downing JR . 11q23 rearrangements in acute leukemia. Leukemia 1996; 10: 74–82.

    CAS  PubMed  Google Scholar 

  4. Heerema NA, Sather HN, Ge J, Arthur DC, Hilden JM, Trigg ME et al. Cytogenetic studies of infant acute lymphoblastic leukemia: poor prognosis of infants with t(4;11) – a report of the Children's Cancer Group. Leukemia 1999; 13: 679–686.

    Article  CAS  Google Scholar 

  5. Reaman GH, Sposto R, Sensel MG, Lange BJ, Feusner JH, Heerema NA et al. Treatment outcome and prognostic factors for infants with acute lymphoblastic leukemia treated on two consecutive trials of the Children's Cancer Group. J Clin Oncol 1999; 17: 445–455.

    Article  CAS  Google Scholar 

  6. Dordelmann M, Reiter A, Borkhardt A, Ludwig WD, Gotz N, Viehmann S et al. Prednisone response is the strongest predictor of treatment outcome in infant acute lymphoblastic leukemia. Blood 1999; 94: 1209–1217.

    CAS  PubMed  Google Scholar 

  7. Pieters R, Den Boer ML, Durian M, Janka G, Schmiegelow K, Kaspers GJL et al. Relation between age, immunophenotype and in vitro drug resistance in 395 children with acute lymphoblastic leukemia – implications for treatment of infants. Leukemia 1998; 12: 1344–1348.

    Article  CAS  Google Scholar 

  8. Scheper RJ, Broxterman HJ, Scheffer GL, Kaaijk P, Dalton WS, Van Heijningen T et al. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res 1993; 53: 1475–1479.

    CAS  PubMed  Google Scholar 

  9. Scheffer GL, Wijngaard PL, Flens MJ, Izquierdo MA, Slovak ML, Pinedo HM et al. The drug resistance-related protein LRP is the human major vault protein. Nat Med 1995; 1: 578–582.

    Article  CAS  Google Scholar 

  10. Den Boer ML, Pieters R, Veerman AJP . Mechanisms of cellular anthracycline resistance in childhood acute leukemia. Leukemia 1998; 12: 1657–1670.

    Article  CAS  Google Scholar 

  11. Van Den Heuvel-Eibrink MM, Sonneveld P, Pieters R . The prognostic significance of membrane transport-associated multidrug resistance (MDR) proteins in leukemia. Int J Clin Pharmacol Ther 2000; 38: 94–110.

    Article  CAS  Google Scholar 

  12. Den Boer ML, Pieters R, Kazemier KM, Rottier MM, Zwaan CM, Kaspers GJL et al. Relationship between major vault protein/lung resistance protein, multidrug resistance-associated protein, P-glycoprotein expression, and drug resistance in childhood leukemia. Blood 1998; 91: 2092–2098.

    CAS  PubMed  Google Scholar 

  13. Pieters R, Loonen AH, Huismans DR, Broekema GJ, Dirven MW, Heyenbrok MW et al. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions. Blood 1990; 76: 2327–2336.

    CAS  PubMed  Google Scholar 

  14. Kaspers GJL, Veerman AJP, Pieters R, Broekema GJ, Huismans DR, Kazemier KM et al. Mononuclear cells contaminating acute lymphoblastic leukaemic samples tested for cellular drug resistance using the methyl-thiazol-tetrazolium assay. Br J Cancer 1994; 70: 1047–1052.

    Article  CAS  Google Scholar 

  15. Kaspers GJL, Pieters R, Van Zantwijk CH, De Laat PA, De Waal FC, Van Wering ER et al. In vitro drug sensitivity of normal peripheral blood lymphocytes and childhood leukaemic cells from bone marrow and peripheral blood. Br J Cancer 1991; 64: 469–474.

    Article  CAS  Google Scholar 

  16. Pieters R, Huismans DR, Leyva A, Veerman AJP . Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemia. Cancer Lett 1988; 41: 323–332.

    Article  CAS  Google Scholar 

  17. Hernandez JM, Mecucci C, Beverloo HB, Selleri L, Wlodarska I, Stul M et al. Htrx. Translocation (11–15)(Q23–Q14) in three patients with acute non-lymphoblastic leukemia (ANLL) – clinical, cytogenetic and molecular studies. Leukemia 1995; 9: 1162–1166.

    CAS  PubMed  Google Scholar 

  18. Harbott J, Viehmann S, Borkhardt A, Henze G, Lampert F . Incidence of TEL/AML1 fusion gene analyzed consecutively in children with acute lymphoblastic leukemia in relapse. Blood 1997; 90: 4933–4937.

    CAS  PubMed  Google Scholar 

  19. Repp R, Borkhardt A, Haupt E, Kreuder J, Brettreich S, Hammermann J et al. Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescence-based automatic DNA-fragment analysis. Leukemia 1995; 9: 210–215.

    CAS  PubMed  Google Scholar 

  20. Van Der Burg M, Beverloo HB, Langerak AW, Wijsman J, Van Drunen E, Slater R et al. Rapid and sensitive detection of all types of MLL gene translocations with a single FISH probe set. Leukemia 1999; 13: 2107–2113.

    Article  CAS  Google Scholar 

  21. Rigby PW, Dieckmann M, Rhodes C, Berg P . Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol 1977; 113: 237–251.

    Article  CAS  Google Scholar 

  22. Arnoldus EP, Wiegant J, Noordermeer IA, Wessels JW, Beverstock GC, Grosveld GC et al. Detection of the Philadelphia chromosome in interphase nuclei. Cytogenet Cell Genet 1990; 54: 108–111.

    Article  CAS  Google Scholar 

  23. Den Boer ML, Zwaan CM, Pieters R, Kazemier KM, Rottier MM, Flens MJ et al. Optimal immunocytochemical and flow cytometric detection of P-gp, MRP and LRP in childhood acute lymphoblastic leukemia. Leukemia 1997; 11: 1078–1085.

    Article  CAS  Google Scholar 

  24. Rots MG, Pieters R, Kaspers GJL, Van Zantwijk CH, Noordhuis P, Mauritz R et al. Differential methotrexate resistance in childhood T – versus common/preB – acute lymphoblastic leukemia can be measured by an in situ thymidylate synthase inhibition assay, but not by the MTT assay. Blood 1999; 93: 1067–1074.

    CAS  PubMed  Google Scholar 

  25. Ramakers-van Woerden NL, Pieters R, Rots MG, Van Zantwijk CH, Noordhuis P, Beverloo BH et al. Infants with acute lymphoblastic leukemia: no evidence for high methotrexate resistance. Leukemia 2002; 16: 941–951.

    Article  Google Scholar 

  26. Basso G, Rondelli R, Covezzoli A, Putti M . The role of immunophenotype in acute lymphoblastic leukemia of infant age. Leuk Lymphoma 1994; 15: 51–60.

    Article  CAS  Google Scholar 

  27. Rubnitz JE, Link MP, Shuster JJ, Carroll AJ, Hakami N, Frankel LS et al. Frequency and prognostic significance of HRX rearrangements in infant acute lymphoblastic leukemia: a Pediatric Oncology Group study. Blood 1994; 84: 570–573.

    CAS  PubMed  Google Scholar 

  28. Hilden JM, Frestedt JL, Moore RO, Heerema NA, Arthur DC, Reaman GH et al. Molecular analysis of infant acute lymphoblastic leukemia – MLL gene rearrangement and reverse transcriptase-polymerase chain reaction for t(4-11)(q21-q23). Blood 1995; 86: 3876–3882.

    CAS  PubMed  Google Scholar 

  29. Greaves MF . Infant leukaemia biology, aetiology and treatment. Leukemia 1996; 10: 372–377.

    CAS  PubMed  Google Scholar 

  30. Heerema NA, Sather HN, Sensel MG, Liu-Mares W, Lange BJ, Bostrom BC et al. Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from the Children's Cancer Group. Blood 1999; 94: 1537–1544.

    CAS  PubMed  Google Scholar 

  31. Kumagai M, Manabe A, Pui CH, Behm FG, Raimondi SC, Hancock ML et al. Stroma-supported culture in childhood B-lineage acute lymphoblastic leukemia cells predicts treatment outcome. J Clin Invest 1996; 97: 755–760.

    Article  CAS  Google Scholar 

  32. Kersey JH, Wang D, Oberto M . Resistance of t(4;11) (MLL-AF4 fusion gene) leukemias to stress-induced cell death: possible mechanism for extensive extramedullary accumulation of cells and poor prognosis. Leukemia 1998; 12: 1561–1564.

    Article  CAS  Google Scholar 

  33. Kaspers GJL, Kardos G, Pieters R, Van Zantwijk CH, Klumper E, Hählen K et al. Different cellular drug resistance profiles in childhood lymphoblastic and non-lymphoblastic leukemia: a preliminary report. Leukemia 1994; 8: 1224–1229.

    CAS  PubMed  Google Scholar 

  34. Haarman E, Zwaan CM, Pieters R, Hählen K, Van Wering ER, Van Der Does-Van Den Berg A et al. Relevance of the in vitro response to glucocorticoids of untreated pediatric acute myeloid leukemic blasts. Med Pediatr Oncol 2000; 35: 228.

    Google Scholar 

  35. Hongo T, Yajima S, Sakurai M, Horikoshi Y, Hanada R . In vitro drug sensitivity testing can predict induction failure and early relapse of childhood acute lymphoblastic leukemia. Blood 1997; 89: 2959–2965.

    CAS  PubMed  Google Scholar 

  36. Pieters R, Huismans DR, Loonen AH, Hählen K, Van Der Does-Van Den Berg A, Van Wering ER et al. Relation of cellular drug resistance to long-term clinical outcome in childhood acute lymphoblastic leukaemia. Lancet 1991; 338: 399–403.

    Article  CAS  Google Scholar 

  37. Kaspers GJL, Veerman AJP, Pieters R, Van Zantwijk CH, Smets LA, Van Wering ER et al. In vitro cellular drug resistance and prognosis in newly diagnosed childhood acute lymphoblastic leukemia. Blood 1997; 90: 2723–2729.

    CAS  PubMed  Google Scholar 

  38. Den Boer ML, Pieters R, Kazemier KM, Harms DO, Janka-Schaub GE, Van Der Does-Van Den Berg A et al. Prognostic value of drug resistance profiles in childhood acute lymphoblastic leukemia. Br J Haematol 1998; 102: 275 O-1104..

    Google Scholar 

  39. Zwaan CM, Kaspers GJL, Pieters R, Huismans DR, Van Wering ER, Janka-Schaub GE et al. Circumvention of cytarabine resistance by 2-Chlorodeoxyadenosine in pediatric acute myeloid and acute lymphoid leukemia: an in vitro study. Blood 2000; 96: 307.

    Google Scholar 

  40. Silverman LB, Mclean TW, Gelber RD, Donnelly MJ, Gilliland DG, Tarbell NJ et al. Intensified therapy for infants with acute lymphoblastic leukemia: results from the Dana-Farber Cancer Institute Consortium. Cancer 1997; 80: 2285–2295.

    Article  CAS  Google Scholar 

  41. Ludwig WD, Rieder H, Bartram CR, Heinze B, Schwartz S, Gassmann W et al. Immunophenotypic and genotypic features, clinical characteristics, and treatment outcome of adult pro-B acute lymphoblastic leukemia: results of the German multicenter trials GMALL 03/87 and 04/89. Blood 1998; 92: 1898–1909.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The Dutch Cancer Society is acknowledged for financially supporting this study (Grant VU95-921). HBB was supported by Grant 99-111 from the Association for International Cancer Research. Participation of the POG group was supported in part by Grants CA 32053 and CA 29139 from the USPHS. We thank the DCSLG for supplying material and relevant clinical information. We also thank the pediatric oncological centers participating in the DCLSG, the German COALL, the BFM, and POG study groups. Karyotyping of the Dutch patients was performed by members of the Netherlands Working party on Cancer Genetics and Cytogenetics (NWCGC) at regional cytogenetics centres, members of which were: CG Beverstock, H de France, A Geurts van Kessel, A Hagemeijer-Hausman, A Hamers, B de Jong, and RM Slater. For German childhood cases, karyotyping was performed in the Oncogenetic Laboratory, Children's Hospital, University of Giessen, Germany. Upstream and downstream cosmid probes for FISH detection of MLL rearrangements were kindly provided by Prof JJM van Dongen, Department of Immunology, Erasmus University Rotterdam. We gratefully acknowledge the statistical advice provided by Dr Bezemer (Vrije Universiteit).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakers-van Woerden, N., Beverloo, H., Veerman, A. et al. In vitro drug-resistance profile in infant acute lymphoblastic leukemia in relation to age, MLL rearrangements and immunophenotype. Leukemia 18, 521–529 (2004). https://doi.org/10.1038/sj.leu.2403253

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403253

Keywords

This article is cited by

Search

Quick links