Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Diversity of the apoptotic response to chemotherapy in childhood leukemia

Abstract

Apoptosis is the primary mechanism through which most chemotherapeutic agents induce tumor cell death. The purpose of this study was to determine the extent to which blasts from children with leukemia undergo a uniform apoptotic death pathway in vivo. The expression of pro- and anti-apoptotic proteins p53, p21, MDM-2, BCL-2, BCL-XL, BCL-XS, and BAX, and caspase-3 activity was determined in circulating blasts collected from the peripheral blood of children with leukemia prior to, and at serial time points following chemotherapy. Culturing blasts ex vivo for 12 h assessed spontaneous apoptosis and the increment induced by chemotherapy. Baseline apoptosis varied between 3% and 29%. Twenty-four hours following chemotherapy the increase in the percentage of cells undergoing apoptosis ranged from <1% to 38%. Eleven of 20 patients who received initial treatment with a p53-dependent drug showed an increase in p53 expression. In these patients, the levels of p53 target genes were also increased. A uniform pattern of BCL-2 family protein expression was not observed and only a minority of samples showed a change that would favor apoptosis. We conclude that that the initial apoptotic response to chemotherapy in children with leukemia is variable involving both p53-dependent and p53-independent pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Pui CH . Childhood leukemias (see comments) N Engl J Med 1995 332: 1618–1630

    Article  CAS  PubMed  Google Scholar 

  2. Gaynon PS, Trigg ME, Heerema NA, Sensel MG, Sather HN, Hammond GD, Bleyer WA . Children's Cancer Group trials in childhood acute lymphoblastic leukemia: 1983–1995 Leukemia 2000 14: 2223–2233

    Article  CAS  PubMed  Google Scholar 

  3. Malmey KW, Shuster JJ, Murphy S, Pullen J, Camitta B . Long-term results of treatment studies for childhood acute lymphoblastic leukemia. Pediatric Oncology Group Studies from 1986–1994 Leukemia 2000 14: 2276–2285

    Article  Google Scholar 

  4. Schrappe M, Reiter A, Zimmermann M, Harbott J, Ludwig WD, Henze G, Gadner H, Odenwald E, Riehm H . Long-term results of four consecutive trials in childhood ALL performed by the ALL-BFM study group from 1981 to 1995. Berlin–Frankfurt–Munster Leukemia 2000 14: 2205–2222

    Article  CAS  PubMed  Google Scholar 

  5. Gaynon PS, Qu RP, Chappell RJ, Willoughby ML, Tubergen DG, Steinherz PG, Trigg ME . Survival after relapse in childhood acute lymphoblastic leukemia: impact of site and time to first relapse – the Children's Cancer Group Experience Cancer 1998 82: 1387–1395

    Article  CAS  PubMed  Google Scholar 

  6. Chessells J . Relapsed lymphoblastic leukaemia in children: a continuing challenge Br J Haematol 1998 102: 423–438

    Article  CAS  PubMed  Google Scholar 

  7. Houghton JA . Apoptosis and drug response Curr Opin Oncol 1999 11: 475–481

    Article  CAS  PubMed  Google Scholar 

  8. Adams JM, Cory S . The Bcl-2 protein family: arbiters of cell survival Science 1998 281: 1322–1326

    Article  CAS  PubMed  Google Scholar 

  9. Solary E, Droin N, Bettaieb A, Corcos L, Dimanche-Boitrel MT, Garrido C . Positive and negative regulation of apoptotic pathways by cytotoxic agents in hematological malignancies Leukemia 2000 14: 1833–1849

    Article  CAS  PubMed  Google Scholar 

  10. Bates S, Vousden KH . p53 in signaling checkpoint arrest or apoptosis Curr Opin Genet Dev 1996 6: 12–18

    Article  CAS  PubMed  Google Scholar 

  11. Brown JM, Wouters BG . Apoptosis, p53, and tumor cell sensitivity to anticancer agents Cancer Res 1999 59: 1391–1399

    CAS  PubMed  Google Scholar 

  12. Elledge RM, Gray R, Mansour E, Yu Y, Clark GM, Ravdin P, Osborne CK, Gilchrist K, Davidson NE, Robert N, Tormey DC, Allred DC . Accumulation of p53 protein as a possible predictor of response to adjuvant combination chemotherapy with cyclophosphamide, methotrexate, fluorouracil, and prednisone forbreast cancer J Natl Cancer Inst 1995 87: 1254–1256

    Article  CAS  PubMed  Google Scholar 

  13. Thompson CB . Apoptosis in the pathogenesis and treatment of disease Science 1995 267: 1456–1462

    Article  CAS  PubMed  Google Scholar 

  14. Momand J, Zambetti GP, Olson DC, George D, Levine AJ . The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation Cell 1992 69: 1237–1245

    Article  CAS  PubMed  Google Scholar 

  15. Marks DI, Kurz BW, Link MP, Ng E, Shuster JJ, Lauer SJ, Carroll D, Brodsky I, Haines DS . Altered expression of p53 and mdm-2 proteins at diagnosis is associated with early treatment failure in childhood acute lymphoblastic leukemia J Clin Oncol 1997 15: 1158–1162

    Article  CAS  PubMed  Google Scholar 

  16. Kroemer G . The proto-oncogene Bcl-2 and its role in regulating apoptosis Nat Med 1997 3: 614–620

    Article  CAS  PubMed  Google Scholar 

  17. Korsmeyer SJ . BCL-2 gene family and the regulation of programmed cell death Cancer Res 1999 59: 1693s–1700s

    CAS  PubMed  Google Scholar 

  18. Miyashita T, Reed JC . Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line Blood 1993 81: 151–157

    CAS  PubMed  Google Scholar 

  19. Schmitt E, Cimoli G, Steyaert A, Bertrand R . Bcl-xL modulates apoptosis induced by anticancer drugs and delays DEVDase and DNA fragmentation-promoting activities Exp Cell Res 1998 240: 107–121

    Article  CAS  PubMed  Google Scholar 

  20. Kornblau SM, Thall PF, Estrov Z, Walterscheid M, Patel S, Theriault A, Keating MJ, Kantarjian H, Estey E, Andreeff M . The prognostic impact of BCL2 protein expression in acute myelogenous leukemia varies with cytogenetics Clin Cancer Res 1999 5: 1758–1766

    CAS  PubMed  Google Scholar 

  21. Reed JC (ed). Bcl-2 Family Proteins: Relative Importance as Determinants of Chemoresistance in Cancer Humana Press: Totowa, NJ 1999

    Google Scholar 

  22. Salomons GS, Smets LA, Verwijs-Janssen M, Hart AA, Haarman EG, Kaspers GJ, Wering EV, Der Does-Van Den Berg AV, Kamps WA . Bcl-2 family members in childhood acute lymphoblastic leukemia: relationships with features at presentation, in vitro and in vivo drug response and long-term clinical outcome Leukemia 1999 13: 1574–1580

    Article  CAS  PubMed  Google Scholar 

  23. Hogarth LA, Hall AG . Increased BAX expression is associated with an increased risk of relapse in childhood acute lymphocytic leukemia Blood 1999 93: 2671–2678

    CAS  PubMed  Google Scholar 

  24. Prokop A, Wieder T, Sturm I, Essmann F, Seeger K, Wuchter C, Ludwig WD, Henze G, Dorken B, Daniel PT . Relapse in childhood acute lymphoblastic leukemia is associated with a decrease of the Bax/Bcl-2 ratio and loss of spontaneous caspase-3 processing in vivo Leukemia 2000 14: 1606–1613

    Article  CAS  PubMed  Google Scholar 

  25. Thornberry NA, Lazebnik Y . Caspases: enemies within Science 1998 281: 1312–1316

    Article  CAS  PubMed  Google Scholar 

  26. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC . Regulation of cell death protease caspase-9 by phosphorylation Science 1998 282: 1318–1321

    Article  CAS  PubMed  Google Scholar 

  27. Ashkenazi A, Dixit VM . Death receptors: signaling and modulation Science 1998 281: 1305–1308

    Article  CAS  PubMed  Google Scholar 

  28. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA . Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9 Cell 1998 94: 325–337

    Article  CAS  PubMed  Google Scholar 

  29. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G . Molecular characterization of mitochondrial apoptosis-inducing factor Nature 1999 397: 441–446

    Article  CAS  PubMed  Google Scholar 

  30. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD . The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis (see comments) Science 1997 275: 1132–1136

    Article  CAS  PubMed  Google Scholar 

  31. Hu Y, Benedict MA, Wu D, Inohara N, Nunez G . Bcl-XL interacts with Apaf-1 and inhibits Apaf-1-dependent caspase-9 activation Proc Natl Acad Sci USA 1998 95: 4386–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Estrov Z, Thall PF, Talpaz M, Estey EH, Kantarjian HM, Andreeff M, Harris D, Van Q, Walterscheid M, Kornblau SM . Caspase 2 and caspase 3 protein levels as predictors of survival in acute myelogenous leukemia Blood 1998 92: 3090–3097

    CAS  PubMed  Google Scholar 

  33. Campos L, Sabido O, Viallet A, Vasselon C, Guyotat D . Expression of apoptosis-controlling proteins in acute leukemia cells Leuk Lymphoma 1999 33: 499–509

    Article  CAS  PubMed  Google Scholar 

  34. Svingen PA, Karp JE, Krajewski S, Mesner PW Jr, Gore SD, Burke PJ, Reed JC, Lazebnik YA, Kaufmann SH . Evaluation of Apaf-1 and procaspases-2, -3, -7, -8, and -9 as potential prognostic markers in acute leukemia Blood 2000 96: 3922–3931

    CAS  PubMed  Google Scholar 

  35. Lotem J, Sachs L . Hematopoietic cytokines inhibit apoptosis induced by transforming growth factor beta 1 and cancer chemotherapy compounds in myeloid leukemic cells Blood 1992 80: 1750–1757

    CAS  PubMed  Google Scholar 

  36. Manabe A, Coustan-Smith E, Behm FG, Raimondi SC, Campana D . Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia Blood 1992 79: 2370–2377

    CAS  PubMed  Google Scholar 

  37. Matsubara K, Kubota M, Adachi S, Kuwakado K, Hirota H, Wakazono Y, Akiyama Y, Mikawa H . Induction of apoptosis in childhood acute leukemia by chemotherapeutic agents: failure to detect evidence of apoptosis in vivo Eur J Haematol 1994 52: 47–52

    Article  CAS  PubMed  Google Scholar 

  38. Smith M, Arthur D, Camitta B, Carroll AJ, Crist W, Gaynon P, Gelber R, Heerema N, Korn EL, Link M, Murphy S, Pui CH, Pullen J, Reamon G, Sallan SE, Sather H, Shuster J, Simon R, Trigg M, Tubergen D, Uckun F, Ungerleider R . Uniform approach to risk classification and treatment assignment for children with acute lymphoblastic leukemia (see comments) J Clin Oncol 1996 14: 18–24

    Article  CAS  PubMed  Google Scholar 

  39. Sgonc R, Wick G . Methods for the detection of apoptosis Int Arch Allergy Immunol 1994 105: 327–332

    Article  CAS  PubMed  Google Scholar 

  40. Davies SM, Robison LL, Buckley JD, Tjoa T, Woods WG, Radloff GA, Ross JA, Perentesis JP . Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia J Clin Oncol 2001 19: 1279–1287

    Article  PubMed  Google Scholar 

  41. Wall AM, Gajjar A, Link A, Mahmoud H, Pui CH, Relling MV . Individualized methotrexate dosing in children with relapsed acute lymphoblastic leukemia Leukemia 2000 14: 221–225

    Article  CAS  PubMed  Google Scholar 

  42. McLeod HL, Krynetski EY, Relling MV, Evans WE . Genetic polymorphism of thiopurine methyltransferase and its clinical relevance for childhood acute lymphoblastic leukemia Leukemia 2000 14: 567–572

    Article  CAS  PubMed  Google Scholar 

  43. Evans WE, Hon YY, Bomgaars L, Coutre S, Holdsworth M, Janco R, Kalwinsky D, Keller F, Khatib Z, Margolin J, Murray J, Quinn J, Ravindranath Y, Ritchey K, Roberts W, Rogers ZR, Schiff D, Steuber C, Tucci F, Kornegay N, Krynetski EY, Relling MV . Preponderance of thiopurine S-methyltransferase deficiency and heterozygosity among patients intolerant to mercaptopurine or azathioprine J Clin Oncol 2001 19: 2293–2301

    Article  CAS  PubMed  Google Scholar 

  44. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Relling M, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS, Schuetz E . Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression Nat Genet 2001 27: 383–391

    Article  CAS  PubMed  Google Scholar 

  45. Lilleyman JS . Clinical importance of speed of response to therapy in childhood lymphoblastic leukaemia Leuk Lymphoma 1998 31: 501–506

    Article  CAS  PubMed  Google Scholar 

  46. Gaynon PS, Desai AA, Bostrom BC, Hutchinson RJ, Lange BJ, Nachman JB, Reaman GH, Sather HN, Steinherz PG, Trigg ME, Tubergen DG, Uckun FM . Early response to therapy and outcome in childhood acute lymphoblastic leukemia: a review Cancer 1997 80: 1717–1726

    Article  CAS  PubMed  Google Scholar 

  47. Johnston JB, Lee K, Verburg L, Blondal J, Mowat MR, Israels LG, Begleiter A . Induction of apoptosis in CD4+ prolymphocytic leukemia by deoxyadenosine and 2′-deoxycoformycin Leuk Res 1992 16: 781–788

    Article  CAS  PubMed  Google Scholar 

  48. Savill J, Fadok V, Henson P, Haslett C . Phagocyte recognition of cells undergoing apoptosis Immunol Today 1993 14: 131–136

    Article  CAS  PubMed  Google Scholar 

  49. Kumar S, Baxter GD, Smith PJ, Pemble L, Collins RJ, Prentice RL, Lavin MF . DNA fragmentation in childhood T-cell acute lymphoblastic leukaemia Mol Biol Med 1987 4: 111–121

    CAS  PubMed  Google Scholar 

  50. Banker DE, Groudine M, Norwood T, Appelbaum FR . Measurement of spontaneous and therapeutic agent-induced apoptosis with BCL-2 protein expression in acute myeloid leukemia Blood 1997 89: 243–255

    CAS  PubMed  Google Scholar 

  51. Ito C, Evans WE, McNinch L, Coustan-Smith E, Mahmoud H, Pui CH, Campana D . Comparative cytotoxicity of dexamethasone and prednisolone in childhood acute lymphoblastic leukemia J Clin Oncol 1996 14: 2370–2376

    Article  CAS  PubMed  Google Scholar 

  52. Haidar MA, El-Hajj H, Bueso-Ramos CE, Manshouri T, Glassman A, Keating MJ, Maher A . Expression profile of MDM-2 proteins in chronic lymphocytic leukemia and their clinical relevance Am J Hematol 1997 54: 189–195

    Article  CAS  PubMed  Google Scholar 

  53. Gustafsson B, Stal O . Overexpression of MDM2 in acute childhood lymphoblastic leukemia Pediatr Hematol Oncol 1998 15: 519–526

    Article  CAS  PubMed  Google Scholar 

  54. Zhou M, Yeager AM, Smith SD, Findley HW . Overexpression of the MDM2 gene by childhood acute lymphoblastic leukemia cells expressing the wild-type p53 gene Blood 1995 85: 1608–1614

    CAS  PubMed  Google Scholar 

  55. Wada M, Bartram CR, Nakamura H, Hachiya M, Chen DL, Borenstein J, Miller CW, Ludwig L, Hansen-Hagge TE, Ludwig WD, Reiter A, Mizoguchi H, Koeffler HP . Analysis of p53 mutations in a large series of lymphoid hematologic malignancies of childhood Blood 1993 82: 3163–3169

    CAS  PubMed  Google Scholar 

  56. Felix CA, Nau MM, Takahashi T, Mitsudomi T, Chiba I, Poplack DG, Reaman GH, Cole DE, Letterio JJ, Whang-Peng J, Knutsen T, Minna JD . Hereditary and acquired p53 gene mutations in childhood acute lymphoblastic leukemia J Clin Invest 1992 89: 640–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kawamura M, Ohnishi H, Guo SX, Sheng XM, Minegishi M, Hanada R, Horibe K, Hongo T, Kaneko Y, Bessho F, Yanagisawa M, Sekiya T, Hayashi Y . Alterations of the p53, p21, p16, p15 and RAS genes in childhood T-cell acute lymphoblastic leukemia Leuk Res 1999 23: 115–126

    Article  CAS  PubMed  Google Scholar 

  58. Takemoto S, Trovato R, Cereseto A, Nicot C, Kislyakova T, Casareto L, Waldmann T, Torelli G, Franchini G . p53 stabilization and functional impairment in the absence of genetic mutation or the alteration of the p14(ARF)-MDM2 loop in ex vivo and cultured adult T-cell leukemia/lymphoma cells Blood 2000 95: 3939–3944

    CAS  PubMed  Google Scholar 

  59. Hu Y, Benedict MA, Ding L, Nunez G . Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase- 9 activation and apoptosis EMBO J 1999 18: 3586–3595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X . Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade Cell 1997 91: 479–489

    Article  CAS  PubMed  Google Scholar 

  61. Eischen CM, Schilling JD, Lynch DH, Krammer PH, Leibson PJ . Fc receptor-induced expression of Fas ligand on activated NK cells facilitates cell-mediated cytotoxicity and subsequent autocrine NK cell apoptosis J Immunol 1996 156: 2693–2699

    CAS  PubMed  Google Scholar 

  62. Wesselborg S, Engels IH, Rossmann E, Los M, Schulze-Osthoff K . Anticancer drugs induce caspase-8/FLICE activation and apoptosis in the absence of CD95 receptor/ligand interaction Blood 1999 93: 3053–3063

    CAS  PubMed  Google Scholar 

  63. Newton K, Strasser A . Ionizing radiation and chemotherapeutic drugs induce apoptosis in lymphocytes in the absence of Fas or FADD/MORT1 signaling. Implications for cancer therapy J Exp Med 2000 191: 195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wieder T, Essmann F, Prokop A, Schmelz K, Schulze-Osthoff K, Beyaert R, Dorken B, Daniel PT . Activation of caspase-8 in drug-induced apoptosis of B-lymphoid cells is independent of CD95/Fas receptor-ligand interaction and occurs downstream of caspase-3 Blood 2001 97: 1378–1387

    Article  CAS  PubMed  Google Scholar 

  65. Coustan-Smith E, Kitanaka A, Pui CH, McNinch L, Evans WE, Raimondi SC, Behm FG, Arico M, Campana D . Clinical relevance of BCL-2 overexpression in childhood acute lymphoblastic leukemia Blood 1996 87: 1140–1146

    CAS  PubMed  Google Scholar 

  66. Uckun FM, Yang Z, Sather H, Steinherz P, Nachman J, Bostrom B, Crotty L, Sarquis M, Ek O, Zeren T, Tubergen D, Reaman G, Gaynon P . Cellular expression of antiapoptotic BCL-2 oncoprotein in newly diagnosed childhood acute lymphoblastic leukemia: a Children's Cancer Group Study Blood 1997 89: 3769–3777

    CAS  PubMed  Google Scholar 

  67. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC . Bax directly induces release of cytochrome c from isolated mitochondria Proc Natl Acad Sci USA 1998 95: 4997–5002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Salomons GS, Brady HJ, Verwijs-Janssen M, Van Den Berg JD, Hart AA, Van Den Berg H, Behrendt H, Hahlen K, Smets LA . The Bax alpha:Bcl-2 ratio modulates the response to dexamethasone in leukaemic cells and is highly variable in childhood acute leukaemia Int J Cancer 1997 71: 959–965

    Article  CAS  PubMed  Google Scholar 

  69. Wall NR, Mohammad RM, Al-Katib AM . Bax:Bcl-2 ratio modulation by bryostatin 1 and novel antitubulin agents is important for susceptibility to drug induced apoptosis in the human early pre-B acute lymphoblastic leukemia cell line, Reh Leuk Res 1999 23: 881–888

    Article  CAS  PubMed  Google Scholar 

  70. Pepper C, Hoy T, Bentley P . Elevated Bcl-2/Bax are a consistent feature of apoptosis resistance in B-cell chronic lymphocytic leukaemia and are correlated with in vivo chemoresistance Leuk Lymphoma 1998 28: 355–361

    Article  CAS  PubMed  Google Scholar 

  71. Johnston JB, Daeninck P, Verburg L, Lee K, Williams G, Israels LG, Mowat MR, Begleiter A . P53, MDM-2, BAX and BCL-2 and drug resistance in chronic lymphocytic leukemia Leuk Lymphoma 1997 26: 435–449

    Article  CAS  PubMed  Google Scholar 

  72. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X . Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors Cell 1998 94: 481–490

    Article  CAS  PubMed  Google Scholar 

  73. Jia L, Macey MG, Yin Y, Newland AC, Kelsey SM . Subcellular distribution and redistribution of Bcl-2 family proteins in human leukemia cells undergoing apoptosis Blood 1999 93: 2353–2359

    CAS  PubMed  Google Scholar 

  74. Cai Z, Lin M, Wuchter C, Ruppert V, Dorken B, Ludwig WD, Karawajew L . Apoptotic response to homoharringtonine in human wt p53 leukemic cells is independent of reactive oxygen species generation and implicates Bax translocation, mitochondrial cytochrome c release and caspase activation Leukemia 2001 15: 567–574

    Article  CAS  PubMed  Google Scholar 

  75. Kronenwett R, Haas R . Antisense strategies for the treatment of hematological malignancies and solid tumors Ann Hematol 1998 77: 1–12

    Article  CAS  PubMed  Google Scholar 

  76. Faderl S, Thall PF, Kantarjian HM, Talpaz M, Harris D, Van Q, Beran M, Kornblau SM, Pierce S, Estrov Z . Caspase 2 and caspase 3 as predictors of complete remission and survival in adults with acute lymphoblastic leukemia Clin Cancer Res 1999 5: 4041–4047

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the members of the Division of Pediatric Hematology/Oncology for their support of the study and for their help in obtaining samples. This work was supported by the Huntsman Cancer Foundation and a Translational Research Award from the Leukemia and Lymphoma Society (WLC).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, T., Raetz, E., Moos, P. et al. Diversity of the apoptotic response to chemotherapy in childhood leukemia. Leukemia 16, 223–232 (2002). https://doi.org/10.1038/sj.leu.2402360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402360

Keywords

This article is cited by

Search

Quick links