Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Targeted Regulation Studies and Therapy

The JAK2 inhibitor AG490 predominantly abrogates the growth of human B-precursor leukemic cells with 11q23 translocation or Philadelphia chromosome

Abstract

The Janus kinase (JAK) family is one of intracellular protein tyrosine kinases (PTKs) present in hematopoietic and lymphoid cells and has been shown to play a crucial role in a variety of biological responses. It was reported that a human B-precursor leukemic cell line was potently inhibited in its proliferation by one of synthetic PTK inhibitors (tyrphostins), AG490, via anti-JAK2 activity. However, no extensive studies about it have been performed. In the present study, we tested 16 human lymphoid leukemic cell lines (B-precursor, 12; T cell, four) for their sensitivity to AG490 using 3H-thymidine incorporation and colony formation assays, and found that B-precursor cell lines with 11q23 translocation or Philadelphia chromosome (Ph1) whose JAK2 proved to be constitutively phosphorylated were predominantly sensitive to AG490 at a concentration that has few inhibitory effect on normal hematopoiesis. We first revealed the association of JAK2 with BCR-ABL in Ph1-positive cell lines and with Bruton's tyrosine kinase (BTK) in cell lines with 11q23 translocation by coimmunoprecipitation experiments. Of interest, AG490 markedly down-regulated phosphorylation of JAK2, but rather transiently up-regulated phosphorylation of BCR-ABL and BTK, suggesting direct implication of AG490 in the process of the JAK2 dephosphorylation. These results indicate that AG490 exerts a potent inhibitory activity to B-precursor leukemia with specific chromosomal abnormalities, and a therapeutic approach using AG490 is expected.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Hunter T, Cooper JA . Protein-tyrosine kinase Annu Rev Biochem 1985 54: 897–930

    Article  CAS  Google Scholar 

  2. Ihle JN . Cytokine receptor signalling Nature 1995 377: 591–594

    Article  CAS  Google Scholar 

  3. Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Silvennoinen O . Signaling through the hematopoietic cytokine receptors Annu Rev Immunol 1995 13: 369–398

    Article  CAS  Google Scholar 

  4. Ihle JN . STATs: signal transducers and activators of transcription Cell 1996 84: 331–334

    Article  CAS  Google Scholar 

  5. Briscoe J, Kohlhuber F, Müller M . Jaks and STATs branch out Trends Cell Biol 1996 6: 336–340

    Article  CAS  Google Scholar 

  6. Darnell JE . STATs and gene regulation Science 1997 277: 1630–1635

    Article  CAS  Google Scholar 

  7. Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN . Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction Proc Natl Acad Sci USA 1993 90: 8429–8433

    Article  CAS  Google Scholar 

  8. Watling D, Guschin D, Müller M, Silvennoinen O, Witthuhn BA, Quelle FW, Rogers NC, Schindler C, Stark GR, Ihle JN, Kerr IM . Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-γ signal transduction pathway Nature 1993 366: 166–170

    Article  CAS  Google Scholar 

  9. O'Shea JJ . Jaks, STATs, cytokine signal transduction, and immunoregulation: are we there yet? Immunity 1997 7: 1–11

    Article  CAS  Google Scholar 

  10. Neubauer H, Cumano A, Müller M, Wu H, Huffstadt U, Pfeffer K . Jak2 deficiency defines an essential development checkpoint in definitive hematopoiesis Cell 1998 93: 397–409

    Article  CAS  Google Scholar 

  11. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S, Vanin EF, Bodner S, Colamonici OR, van Deursen JM, Grosveld G, Ihle JN . Jak2 is essential for signaling through a variety of cytokine receptors Cell 1998 93: 385–395

    Article  CAS  Google Scholar 

  12. Sawyers CL, Denny CT, Witte ON . Leukemia and the disruption of normal hematopoiesis Cell 1991 64: 337–350

    Article  CAS  Google Scholar 

  13. Pui CH, Evans WE . Acute lymphoblastic leukemia N Engl J Med 1998 339: 605–609

    Article  CAS  Google Scholar 

  14. Cohen A, Grunberger T, Vanek W, Dube ID, Doherty PJ, Letarte M, Roifman C, Freedman MH . Constitutive expression and role in growth regulation of interleukin-1 and multiple cytokine receptors in a biphenotypic leukemic cell line Blood 1991 78: 94–102

    CAS  PubMed  Google Scholar 

  15. Touw I, Pouwels K, Agthoven TV, Gurp RV, Budel L, Hoogerbrugge H, Delwel R, Goodwin R, Namen A, Löwenberg B . Interleukin-7 is a growth factor of precursor B and T acute lymphoblastic leukemia Blood 1990 75: 2097–2101

    CAS  PubMed  Google Scholar 

  16. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z, Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A, Roifman CM . Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor Nature 1996 379: 645–648

    Article  CAS  Google Scholar 

  17. Novogrodsky A, Vanichkin A, Patya M, Gazit A, Osherov N, Levitzki A . Prevention of lipopolysaccharide-induced lethal toxicity by tyrosine kinase inhibitors Science 1994 264: 1319–1322

    Article  CAS  Google Scholar 

  18. Gazit A, Yaish P, Gilon C, Levitzki A . Tyrphostins I: synthesis and biological activity of protein tyrosine kinase inhibitors J Med Chem 1989 32: 2344–2352

    Article  CAS  Google Scholar 

  19. Gazit A, Osherov N, Posner I, Yaish P, Poradosou E, Gilon C, Levitzki A . Tyrphostins. 2. Heterocyclic and alpha-substituted benzylidenemalononitrile tyrphostins as potent inhibitors of EGF receptor and ErbB2/neu tyrosine kinases J Med Chem 1991 34: 1896–1907

    Article  CAS  Google Scholar 

  20. Miyakawa Y, Oda A, Druker BJ, Kato T, Miyazaki H, Handa M, Ikeda Y . Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus Kinase 2 and Shc in human blood platelets Blood 1995 86: 23–27

    CAS  PubMed  Google Scholar 

  21. Kojika S, Sugita K, Inukai T, Saito M, Iijima K, Tezuka T, Goi K, Shiraishi K, Mori T, Okazaki T, Kagami K, Ohyama K, Nakazawa S . Mechanisms of glucocorticoid resistance in human leukemic cells: implication of abnormal 90 and 70 kDa heat shock proteins Leukemia 1996 10: 994–999

    CAS  PubMed  Google Scholar 

  22. Inukai T, Sugita K, Iijima K, Goi K, Tezuka T, Kojika S, Kagami K, Mori T, Kinoshita A, Suzuki T, Okazaki-Koyama T, Nakazawa S . Leukemic cells with 11q23 translocations express granulocyte colony-stimulating factor (G-CSF) receptor and their proliferation is stimulated with G-CSF Leukemia 1998 12: 382–389

    Article  CAS  Google Scholar 

  23. Inukai T, Sugita K, Mitsui K, Iijima K, Goi K, Tezuka T, Kojika S, Kagami K, Mori T, Kinoshita A, Suzuki T, Okazaki-Koyama T, Nakazawa S . Participation of granulocyte colony-stimulating factor in the growth regulation of leukemia cells from Philadelphia chromosome-positive acute leukemia and blast crisis of chronic myeloid leukemia Leukemia 2000 14: 1386–1395

    Article  CAS  Google Scholar 

  24. Iijima K, Sugita K, Inukai T, Goi K, Tezuka T, Uno K, Sato H, Kagami K, Nakazawa S . Expression of thrombopoietin receptor and its functional role in human B-precursor leukemia cells with 11q23 translocation or Philadelphia chromosome Leukemia 2000 14: 1598–1605

    Article  CAS  Google Scholar 

  25. Wilson-Rawls J, Xie S, Liu J, Laneuville P . Arlinghaus RB. P210 Bcr-Abl interacts with the Interleukin 3 receptor βc subunit and constitutively induces its tyrosine phosphorylation Cancer Res 1996 56: 3426–3430

    CAS  PubMed  Google Scholar 

  26. Chai SK, Nichols GL, Rothman P . Constitutive activation of JAKs and STATs in BCR-Abl-expressing cell lines and peripheral blood cells derived from leukemic patients J Immunol 1997 159: 4720–4728

    CAS  PubMed  Google Scholar 

  27. Takahashi-Tezuka M, Hibi M, Fujitani Y, Fakada T, Yamaguchi T, Hirano T . Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK Oncogene 1997 14: 2273–2282

    Article  CAS  Google Scholar 

  28. Levitzzki A, Gazit A . Tyrosine kinase inhibition: an approach to drug development Science 1995 267: 1782–1788

    Article  Google Scholar 

  29. Anafi M, Gazit A, Zehavi A, Ben-Neriah Y, Levitzki A . Tyrphostin-induced inhibition of p210bcr-abl tyrosine kinase activity induces K562 to differentiate Blood 1993 82: 3524–3529

    CAS  PubMed  Google Scholar 

  30. Kaur G, Gazit A, Levitzki A, Stowe E, Cooney DA, Sausville EA . Tyrphostin induced growth inhibition: correlation with effect on p210bcr-abl autokinase activity in K562 chronic myelogenous leukemia Anti-Cancer Drug Des 1994 5: 213–222

    Article  CAS  Google Scholar 

  31. Bergamaschi G, Rosti V, Danova M, Ponchio L, Lucotti C, Cazzola M . Inhibitors of tyrosine phosphorylation induce apoptosis in human leukemic cell lines Leukemia 1993 7: 2013–2018

    Google Scholar 

  32. Ilaria RL, Van Etten RA . P210 and P190 (BCR/ABL) induce the tyrosine phosphorylation and DNA binding activity of multiple specific STAT family members J Biol Chem 1996 271: 31704–31710

    Article  CAS  Google Scholar 

  33. Carlesso N, Frank DA, Griffin JD . Tyrosyl phosphorylation and DNA binding activity of signal transducers and activators of transcription (STAT) proteins in hematopoietic cell lines transformed by Bcr/Abl J Exp Med 1996 183: 811–820

    Article  CAS  Google Scholar 

  34. Nieborowska-Skorska M, Wasik MA, Slupianek A, Salomoni P, Kitamura T, Calabretta B, Skorski T . Signal transducer and activator of transcription (STAT) 5 activation by BCR/ABL is dependent on intact Src homology (SH) 3 and SH2 domains of BCR/ABL and is required for leukemogenesis J Exp Med 1999 189: 1229–1242

    Article  CAS  Google Scholar 

  35. De Groot RP, Raaijmakers JA, Lammers JW, Jove R, Koenderman L . STAT5 activation by BCR-Abl contributes to transformation of K562 leukemia cells Blood 1999 94: 1108–1112

    CAS  PubMed  Google Scholar 

  36. Tsukada S, Saffran DC, Rawlings DJ, Parolini O, Allen RC, Klisak I, Sparkes RS, Kubagawa H, Mohandas T, Quan S, Belmont JW, Cooper MD, Conley ME, Witte ON . Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia Cell 1993 72: 297–290

    Article  Google Scholar 

  37. Vetrie D, Vorechovsky I, Sideras P, Holland J, Davies A, Flinter F, Hammarstrom L, Kinnon C, Levinsky R, Bobrow M, Smith CIM, Bentley DR . The gene involved in X-linked agammaglobulinemia is a member of the src family of protein-tyrosine kinases Nature 1993 361: 226–233

    Article  CAS  Google Scholar 

  38. Desiderio S . Role of btk in B cell development and signaling Curr Opin Immunol 1997 9: 534–540

    Article  CAS  Google Scholar 

  39. De Vos J, Jourdan M, Tarte K, Jasmin C, Klein B . Jak2 tyrosine kinase inhibitor tyrphostin AG490 downregulates the mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription (STAT) pathways and induces apoptosis in myeloma cells Br J Haematol 2000 109: 823–828

    Article  CAS  Google Scholar 

  40. Constantin G, Brocke S, Izikson A, Laudanna C, Butcher EC . Tyrphostin AG490, a tyrosine kinase inhibitor, blocks actively induced experimental autoimmune encephalomyelitis Eur J Immunol 1998 28: 3523–3529

    Article  CAS  Google Scholar 

  41. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB . Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells Nature Med 1996 2: 561–566

    Article  CAS  Google Scholar 

  42. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ . CGP57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins Blood 1997 90: 4947–4952

    CAS  PubMed  Google Scholar 

  43. Druker BJ, Kantarjian H, Sawyers CL, Resta D, Reese SF, Ford J, Talpaz M . Activity of an ABL specific tyrosine kinase inhibitor in patients with BCR-ABL positive acute leukemias, including chronic myelogenous leukemia in blast crisis Blood 1999 94 (Suppl.): 697a

    Google Scholar 

  44. Druker BJ, Talpaz M, Resta D, Peng B, Buchdunger E, Ford J, Sawyers CL . Clinical efficacy and safty of an ABL specific tyrosine kinase inhibitor as targeted therapy for chronic myelogenous leukemia Blood 1999 94 (Suppl.): 368a

    Google Scholar 

  45. Tomasson MH, Williams IR, Hasserjian R, Udomsakdi C, McGrath SM, Schwaller J, Druker B, Gilliland DG . TEL/PDGFβR induces hematologic malignancies in mice that respond to a specific tyrosine kinase inhibitor Blood 1999 93: 1707–1714

    CAS  PubMed  Google Scholar 

  46. Thiesing JT, Ohno-Jones S, Kolibaba KS, Druker BJ . Efficacy of STI571, an abl tyrosine kinase inhibitor, in conjunction with other antileukemic agents against bcr-abl-positive cells Blood 2000 96: 3195–3199

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyamoto, N., Sugita, K., Goi, K. et al. The JAK2 inhibitor AG490 predominantly abrogates the growth of human B-precursor leukemic cells with 11q23 translocation or Philadelphia chromosome. Leukemia 15, 1758–1768 (2001). https://doi.org/10.1038/sj.leu.2402260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402260

Keywords

This article is cited by

Search

Quick links