Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Erythrocyte Membrane Alterations in ALL

Reversible erythrocyte skeleton destabilization is modulated by beta-spectrin phosphorylation in childhood leukemia

Abstract

The erythrocyte skeleton plays an essential role in determining the shape and deformability of the red cell. Disruption of the interaction between components of the red cell membrane skeleton may cause loss of structural and functional integrity of the membrane. Several observations based on studies in vitro strongly suggest that phosphorylation may modify interactions between proteins, leading to a reduced affinity. In particular, increased phosphorylation of β-spectrin decreases membrane mechanical stability. In order to investigate the presence of membrane protein defects we investigated the erythrocyte membrane protein composition and phosphorylation in 22 children with leukemia at diagnosis and during the remission phase. Sixteen children had acute lymphoblastic leukemia (ALL), three had chronic myeloid leukemia (CML) and three had acute myeloid leukemia (AML). Ten patients (eight ALL and two CML) displayed elliptocytosis and poikilocytosis, an increase of spectrin dimers (41.8 ± 15.6) and an enhanced phosphorylation of β-spectrin (108 ± 15%) at diagnosis. These alterations disappeared during the remission phase. This is the first demonstration of a reversible erythrocyte membrane alteration in leukemia. Since the β-spectrin phosphate sites are located near the C-terminal region and close to the head of the β-chain that is involved in dimer-dimer interaction, we supposed that the β-chain phosphorylation has an effect upon the interactions between spectrin dimers, ie the tetramerization process. The weakening of this process should be responsible for the presence of elliptocytes and poikilocytes as reported in hereditary elliptocytosis and pyropoikilocytosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mohandas N, Chasis JA . Red cell deformability, membrane material properties, and shape: regulation by transmembrane, skeletal, and cytosolic proteins and lipids Semin Hematol 1993 30: 171–192

    CAS  PubMed  Google Scholar 

  2. Lux SE, Palek J . Disorders of the red cell membrane. In: Handin RI, Lux SE, Stossel TP (eds) Blood: Principles and Practice of Hematology Lippincott: Philadelphia 1995 pp 1701–1818

    Google Scholar 

  3. Gallagher PG, Forget BG, Lux SE . Disorders of the erythrocyte membrane. In: Nathan DG, Orkin SH (eds) Nathan and Oski's Hematology of Infancy and Childhood Saunders: Philadelphia 1998 pp 544–664

    Google Scholar 

  4. Iolascon A, Miraglia del Giudice E, Perrotta S, Alloisio N, Morlé L, Delaunay J . Hereditary spherocytosis: from clinical to molecular defects Haematologica 1998 83: 240–257

    CAS  PubMed  Google Scholar 

  5. Gallagher PG, Forget BG . Spectrin genes in health and disease Semin Hematol 1993 30: 4–21

    CAS  PubMed  Google Scholar 

  6. Delaunay J, Dhermy D . Mutations involving the spectrin heterodimer contact site: clinical expression and alterations in specific function Semin Hematol 1993 30: 21–33

    CAS  PubMed  Google Scholar 

  7. Miraglia del Giudice E, Perrotta S, Sannino E, De Angelis F, Nobili B, Iolascon A . Molecular heterogeneity of hereditary elliptocytosis in Italy Haematologica 1994 79: 400–405

    CAS  PubMed  Google Scholar 

  8. Harris HW Jr, Lux SE . Structural characterization of the phosphorylation sites of human erythrocyte spectrin J Biol Chem 1980 255: 11512–11520

    PubMed  Google Scholar 

  9. Ungewickell E, Bennett PM, Calvert R, Ohanian V, Gratzer WB . In vitro formation of a complex between cytoskeletal proteins of the human erythrocyte Nature 1979 280: 811–814

    Article  CAS  PubMed  Google Scholar 

  10. Lu PW, Soong CJ, Tao M . Phosphorylation of ankyrin dicreases its affinity for spectrin tetramer J Biol Chem 1985 260: 14958–14964

    CAS  PubMed  Google Scholar 

  11. Eder PS, Soong CJ, Tao M . Phosphorylation reduces the affinity of protein 4.1 for spectrin Biochemistry 1986 25: 1764–1770

    Article  CAS  PubMed  Google Scholar 

  12. Soong CJ, Lu PW, Tao M . Analysis of band 3 cytoplasmatic domain phosphorylation and association with ankyrin Arch Biochem Biophys 1987 254: 509–517

    Article  CAS  PubMed  Google Scholar 

  13. Boivin P . Role of the phosphorylation of red blood cell membrane proteins Biochem J 1988 256: 689–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Husain-Chishti A, Levin A, Branton D . Abolition of actin-bundling by phosphorylation of human erythrocyte protein 4.9 Nature 1988 334: 718–721

    Article  CAS  PubMed  Google Scholar 

  15. Ling E, Danilov YN, Cohen CM . Modulation of red cell band 4.1 function by cAMP-dependent kinase and protein kinase C phosphorylation J Biol Chem 1988 263: 2209–2216

    CAS  PubMed  Google Scholar 

  16. Danilov YN, Fennel R, Ling E, Coehn CM . Selective modulation of band 4.1 binding to erythrocyte membranes by protein kinase C J Biol Chem 1990 265: 2556–2562

    CAS  PubMed  Google Scholar 

  17. Chao TS, Tao M . Modulation of protein 4.1 binding to inside-out membrane vescicles by phosphorylation Biochemistry 1991 30: 10529–10530

    Article  CAS  PubMed  Google Scholar 

  18. Olivieri O, De Franceschi L, Bordin L, Manfredi M, Miraglia del Giudice E, Perrotta S, De Vivo M, Guarini P, Corrocher R . Increased membrane protein phosphorylation and anion transport activity in chorea-acanthocytosis Haematologica 1997 82: 648–653

    CAS  PubMed  Google Scholar 

  19. Manno S, Takakuwa Y, Nagao K, Mohandas N . Modulation of erythrocyte membrane mechanical function by β spectrin phosphorylation and dephosphorylation J Biol Chem 1995 270: 5659–5665

    Article  CAS  PubMed  Google Scholar 

  20. Annino L, Di Giovanni S, Tentor; L Jr, Cafolla A, Nanni Costa MP, Salvagnini ML, Angeli G . Acquired hemoglobin H disease in a case of refractory anemia with execess of blasts (RAEB) evolving into acute nonlymphoid leukemia Acta Haematol 1984 72: 41–44

    Article  CAS  PubMed  Google Scholar 

  21. Hoyle C, Kaeda J, Leslie J, Luzzato L . Acquired ß thalassaemia trait in MDS Br J Haematol 1991 79: 116–131

    Article  CAS  PubMed  Google Scholar 

  22. Tani K, Fujii H, Tacahashi K, Kodo H, Asano S, Takaku F, Miwa S . Erythrocyte enzyme activities in myelodysplastic syndromes: elevated pyruvate kinase acticity Am J Hematol 1989 30: 97–103

    Article  CAS  PubMed  Google Scholar 

  23. Djaldetti M, Cohen A, Hart J . Elliptocytosis preceding myelofibrosis in a patient with polycytemia vera Acta Haematol 1984 72: 26–28

    Article  CAS  PubMed  Google Scholar 

  24. Rummens JL, Verfaillie C, Criel A, Hidajat M, Vanhoof A, Van den Berghe H, Louwagie A . Elliptocytosis and schistocytosis in myelodysplasia: report of two cases Acta Haematol 1986 75: 174–177

    Article  CAS  PubMed  Google Scholar 

  25. Alter BP, Weiner MA, Harris MB . Erythrocyte characteristics in childhood acute leukemia Am J Pediat Hematol/Oncol 1989 11: 8–15

    Article  CAS  Google Scholar 

  26. Kumar A, Gupta CM . Red cell membrane abnormalities in chronic myeloid leukaemia Nature 1983 303: 632–633

    Article  CAS  PubMed  Google Scholar 

  27. Basu J, Kundu M, Rakshit MM, Chakrabarti P . Abnormal erythrocyte membrane cytoskeleton structure in chronic myelogenous leukaemia Biochim Biophys Acta 1988 945: 121–126

    Article  CAS  PubMed  Google Scholar 

  28. Kundu M, Basu J, Chakrabarti P, Rakshit MM . Abnormalities in the erythrocyte membrane in acute lymphoid leukaemia Biochem J 1989 258: 903–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kundu M, Basu J, Rakshit MM, Chakrabarti P . Abnormalities in erythrocyte membrane band 3 in chronic myelogenous leukemia Biochim Biophys Acta 1989 985: 97–100

    Article  CAS  PubMed  Google Scholar 

  30. Kundu M, Basu J, Fujimagari M, Williamson P, Schlegel RA, Chakrabarti P . Altered erythrocyte protein kinase C activity and membrane protein phosphorylation in chronic myelogenous leukemia Biochim Biophys Acta 1991 1096: 205–208

    Article  CAS  PubMed  Google Scholar 

  31. Athanassiou G, Symeonidis A, Korakli A, Missirlis YF, Zoumbos NC . Deformability of the erythrocyte membrane in patients with myelodyspastic syndromes Acta Haematol 1992 87: 169–172

    Article  CAS  PubMed  Google Scholar 

  32. Ideguchi I, Yamada Y, Kondo S, Tamura K, Makino S, Hamasaki N . Abnormal erythrocytes band 4.1 protein in myelodysplastic syndrome with elliptocytosis Br J Haematol 1993 85: 387–392

    Article  CAS  PubMed  Google Scholar 

  33. De Cataldo F, Cairoli R, Baudo F, Pezzetti L, Lo Cunsolo C, Perutelli P, Mori PG . Abnormalities of cytoskeletal proteins of the red blood cells in myelodysplastic syndromes Int J Hematol 1994 59: 227–229

    CAS  PubMed  Google Scholar 

  34. De Cataldo F, Baudo F, Redaelli R, Pezzetti L, Marenco P, Cattaneo D . Abnormal multimeric pattern of platelet Von Willebrand Factor (VWF) in a case of myelodysplastic syndrome (MDS) and its normalization in remission Am J Hematol 1992 39: 151–152

    Article  CAS  Google Scholar 

  35. Mazzucato M, De Marco L, De Angelis V, De Roia D, Bizzarro N, Casonato A . Platelet membrane abnormalities in myeloproliferative disorders: decrease in glycoproteins Ib and IIb/IIIa complex is associated with deficient receptor function Br J Haematol 1989 73: 369–374

    Article  CAS  PubMed  Google Scholar 

  36. Miraglia del Giudice E, Iolascon A, Pinto L, Nobili B, Perrotta S . Erythrocyte membrane protein alterations underlying clinical heterogeneity in hereditary spherocytosis Br J Haematol 1994 88: 52–55

    Article  CAS  PubMed  Google Scholar 

  37. Perrotta S, Miraglia del Giudice E, Alloisio N, Sciarratta G, Pinto L, Delaunay J, Cutillo S, Iolascon A . Mild elliptocytosis associated with the α34 arg → trp mutation in spectrin Genova (α1/74) Blood 1994 83: 3346–3349

    CAS  PubMed  Google Scholar 

  38. Wolfe LC, Lux S . Membrane protein phosphorylation of intact normal and hereditary spherocytic erythrocytes J Biol Chem 1978 253: 3336–3342

    CAS  PubMed  Google Scholar 

  39. Fairbanks G, Steck TL, Wallach DFH . Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane Biochemistry 1971 10: 2606–2616

    Article  CAS  PubMed  Google Scholar 

  40. Lowry OH, Rosebrough NI, Farr AL, Randall J . Protein measurement with the folin phenol reagent J Biol Chem 1951 193: 265–269

    CAS  PubMed  Google Scholar 

  41. Ungewickell E, Gratzer W . Self-association of human spectrin. A thermodynamic and kinetic study Eur J Biochem 1978 88: 379–385

    Article  CAS  PubMed  Google Scholar 

  42. Shahbakhti F, Gratzer B . Analysis of the self-association of human red cell spectrin Biochemistry 1986 25: 5969–5975

    Article  CAS  PubMed  Google Scholar 

  43. Anderson JM, Tyler JM . State of spectrin phosphorylation does not affect erythrocyte shape or spectrin binding to erythrocyte membranes J Biol Chem 1980 255: 1259–1265

    CAS  PubMed  Google Scholar 

  44. Becker PS, Tse WT, Lux SE, Forget BG . β spectrin kissimmee: a spectrin variant associated with autosomal dominant hereditary spherocytosis and defective binding to protein 4.1 J Clin Invest 1993 92: 612–616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Birchmeier W, Singer SJ . On the mechanism of ATP-induced shape changes in human erythrocyte membranes.II. The role of ATP J Cell Biol 1977 73: 647–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministero dell'Università e della Ricerca Scientifica e Tecnologica (MURST) 1997.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrotta, S., del Giudice, E., Iolascon, A. et al. Reversible erythrocyte skeleton destabilization is modulated by beta-spectrin phosphorylation in childhood leukemia. Leukemia 15, 440–444 (2001). https://doi.org/10.1038/sj.leu.2402047

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402047

Keywords

This article is cited by

Search

Quick links