Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Adult ALL: Regenerating Precursor B Cells

Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy

Abstract

Immunofluorescence stainings for the CD10 antigen and terminal deoxynucleotidyl transferase (TdT) can be used for the detection of leukemic blasts in CD10+ precursor-B-acute lymphoblastic leukemia (precursor-B-ALL) patients, but can also provide insight into the regeneration of normal precursor-B-cells in bone marrow (BM). Over a period of 15 years, we studied the regeneration of CD10+, TdT+, and CD10+/TdT+ cells in BM of children with (CD10+) precursor-B-ALL during and after treatment according to three different treatment protocols of the Dutch Childhood Leukemia Study Group (DCLSG) which differed both in medication and time schedule. This study included a total of 634 BM samples from 46 patients who remained in continuous complete remission (CCR) after treatment according to DCLSG protocols VI (1984–1988; n = 8), VII (1988–1991; n = 10) and VIII (1991–1997; n = 28). After the cytomorphologically defined state of complete remission with CD10+ and CD10+/TdT+ frequencies generally below 1% of total BM cells, a 10-fold increase in precursor-B-cells was observed in protocol VII and protocol VIII, but not in protocol VI. At first sight this precursor-B-cell regeneration during treatment resembled the massive regeneration of the precursor-B-cell compartment after maintenance treatment, and appeared to be related to the post-induction or post-central nervous system (CNS) therapy stops in protocols VII and VIII. However, careful evaluation of the distribution between the ‘more mature’ (CD10+/TdT) and the ‘immature’ (CD10+/TdT+) precursor-B-cells revealed major differences between the post-induction/post-re-induction precursor-B-cell regeneration (low ‘mature/immature’ ratio: generally <1.0), the post-cns treatment regeneration (moderate ‘mature/immature’ ratio: 1.2–2.8), and the post-maintenance regeneration (high ‘mature/ immature’ ratio: 5.7–7.6). we conclude that a therapy stop of approximately 2 weeks is already sufficient to induce significant precursor-b-cell regeneration even from aplastic bm after induction treatment. moreover, differences in precursor-b-cell regeneration patterns are related to the intensity of the preceding treatment block, with lower ‘mature/immature’ ratios after the highly intensive treatment blocks. this information is essential for a correct interpretation of flow cytometric immunophenotyping results of bm samples during follow-up of leukemia patients. particularly in precursor-b-all patients, regeneration of normal precursor-b-cells should not be mistaken for a relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Van Dongen JJM, Adriaansen HJ . Immunobiology of leukemia. In: Henderson ES, Lister TA, Greaves MF (eds). Leukemia, 6th edn WB Saunders: Philadelphia 1996 pp 83–130

  2. Visser O, Coebergh JWW, Schouten JL, Dijck JAAM van (eds) . Incidence of Cancer in the Netherlands 1995. Seventh report of the Netherlands Cancer Registry Vereniging van Integrale Kankercentra: Utrecht 1998

    Google Scholar 

  3. Pui CH . Childhood leukemias New Engl J Med 1998 339: 605–614

    Article  CAS  Google Scholar 

  4. Van Dongen JJM, Hooijkaas H, Adriaansen HJ, Hählen K, Van Zanen GE . Detection of minimal residual acute lymphoblastic leukemia by immunological marker analysis: possibilities and limitations. In: A Hagenbeek, B Löwenberg (eds) Minimal Residual Disease in Acute Leukemia M Nijhoff: Dordrecht 1986 pp 113–133

    Google Scholar 

  5. Van Dongen JJM, Breit TM, Adriaansen HJ, Beishuizen A, Hooijkaas H . Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction Leukemia 1992 6: 47–59

    PubMed  Google Scholar 

  6. Campana D, Pui C-H . Detection of minimal residual disease in acute leukemia: methodological advances and clinical significance Blood 1995 85: 1416–1434

    CAS  Google Scholar 

  7. Van Dongen JJM, Szczepanski T, De Bruijn MAC, Van den Beemd MWM, De Bruin-Versteeg S, Wijkhuijs JM, Tibbe GJM, Van Gastel-Mol EJ, Groeneveld K, Hooijkaas H . Detection of minimal residual disease in acute leukemia patients Cytokin Mol Ther 1996 2: 121–133

    CAS  Google Scholar 

  8. Janossy G, Bollum FJ, Bradstock KF, Ashley J . Cellular phenotypes of normal and leukemic hemopoietic cells determined by analysis with selected antibody combinations Blood 1980 56: 430–441

    CAS  PubMed  Google Scholar 

  9. Knulst AC, Adriaansen HJ, Hählen K, Stigter JC, Van den Beemd MWM, Hagemeijer A, Van Dongen JJM, Hooijkaas H . Early diagnosis of smoldering acute lymphoblastic leukemia using immunological marker analysis Leukemia 1993 7: 532–536

    CAS  PubMed  Google Scholar 

  10. Ryan D, Kossover S, Mitchell S, Frantz C, Hennessy L, Cohen H . Subpopulations of common acute lymphoblastic leukemia antigen-positive lymphoid cells in normal bone marrow identified by hematopoietic differentiation antigens Blood 1986 68: 417–425

    CAS  PubMed  Google Scholar 

  11. Lucio P, Parreira A, van den Beemd MWM, van Lochem EG, van Wering ER, Baars E, Porwit-MacDonald A, Bjorklund E, Gaipa G, Biondi A, Orfao A, van Dongen JJM, San Miguel JF . Flow cytometric analysis of normal and leukemic bone marrow B-cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B-ALL patients. Part I. Normal B cell differentiation Leukemia 1999 13: 419–427

    Article  CAS  Google Scholar 

  12. Kluin-Nelemans HC, Bolhuis RL, Löwenberg B, Campana D, Sizoo W . Characterization of normal and regenerating bone marrow cells with a panel of monoclonal antibodies Scand J Haematol 1986 36: 71–78

    Article  CAS  Google Scholar 

  13. Van den Doel LJ, Pieters R, Huismans DR, Van Zantwijk CH, Loonen AH, Broekema GJ, de Waal FC, Veerman AJP . Immunological phenotype of lymphoid cells in regenerating bone marrow of children after treatment for acute lymphoblastic leukemia Eur J Haematol 1988 41: 170–175

    Article  CAS  Google Scholar 

  14. Asma GEM, Langlois-Van den Bergh R, Vossen JM . Regeneration of TdT+, pre-B, and B cells in bone marrow after allogeneic bone marrow transplantation Transplantation 1987 43: 865–870

    Article  CAS  Google Scholar 

  15. Smedmyr B, Bengtsson M, Jakobsson A, Simonsson B, öberg G, Tötterman TH . Regeneration of CALLA (CD10+), TdT+ and double-positive cells in the bone marrow and blood after autologous bone marrow transplantation Eur J Haematol 1991 46: 146–151

    Article  CAS  Google Scholar 

  16. Farahat N, Lens D, Zomas A, Morilla R, Matutes E, Catovsky D . Quantitative flow cytometry can distinguish between normal and leukaemic B-cell precursor Br J Haematol 1995 91: 640–646

    Article  CAS  Google Scholar 

  17. Lavabre-Bertrand T, Janossy G, Ivory K, Peters R, Secker-Walker L, Porwit-MacDonald A . Leukemia-associated changes identified by quantitative flow-cytometry: I CD10 expression Cytometry 1994 18: 209–217

    Article  CAS  Google Scholar 

  18. Veerman AJP, Hählen K, van Leeuwen EF, De Vaan GAM, Solbu G, Siciu S, Van Wering E, Van der Does-Van den Berg A . High cure rate with a moderately intensive treatment regimen in non-high-risk childhood acute lymphoblastic leukemia: results of protocol ALL VI from the Dutch Childhood Leukemia Study Group J Clin Oncol 1996 14: 911–918

    Article  CAS  Google Scholar 

  19. Reiter A, Schrappe M, Ludwig WD, Hiddemann W, Sauter S, Henze G, Zimmermann M, Lampert F, Havers W, Niethammer D, Odenwald E, Ritter J, Mann G, Welte K, Gadner H, Riehm H . Chemotherapy in 998 unselected childhood acute lymphoblastic leukemia patients. Results and conclusions of the multicenter trial ALL-BFM 86 Blood 1994 84: 3122–3133

    CAS  Google Scholar 

  20. Van Dongen-Melman JEWM, de Groot A, van Dongen JJM, Verhulst FC, Hählen K . Cranial irradiation is the major cause of learning problems in children treated for leukemia and lymphoma: a comparative study Leukemia 1997 11: 1197–1200

    Article  CAS  Google Scholar 

  21. Van Dongen JJM, Hooijkaas H, Comans-Bitter M, Hählen K, De Klein A, Van Zanen GE, Van ‘t Veer MB, Abels J, Benner R . Human bone marrow cells positive for terminal deoxynucleotidyl transferase (TdT), HLA-DR, and a T cell marker may represent prothymocytes J Immunol 1985 135: 3144–3150

    CAS  PubMed  Google Scholar 

  22. Groeneveld K, Te Marvelde JG, Van den Beemd MWM, Hooijkaas H, Van Dongen JJM . Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes Leukemia 1996 10: 1383–1389

    CAS  PubMed  Google Scholar 

  23. Van Lochem EG, Groeneveld K, Te Marvelde JG, Van den Beemd MWM, Hooijkaas H, Van Dongen JJM . Flow cytometric detection of intracellular antigens for immunophenotyping of normal and malignant leukocytes. Testing of a new fixation-permeabilization solution Leukemia 1997 11: 2208–2210

    Article  CAS  Google Scholar 

  24. Ryan DH, Van Dongen JJM . Detection of residual disease in acute leukemia using immunological markers. In: Bennett JM, Foon KA (eds) Immunologic Approaches to the Classification and Management of Lymphomas and Leukemias Kluwer Academic: Norwell, MA 1988 pp 173–207

    Chapter  Google Scholar 

  25. San Miguel JF, Orfao A, Pongers-Willemse MJ, Van Dongen JJM . Detection of minimal residual disease in acute lymphoblastic leukemia. In: Willemze R, McArthur JR, Kansu E (eds) Educational Program Book 1998 of ISH-EHA Combined Haematology Congress EHA: Amsterdam 1998 pp 22–29

    Google Scholar 

  26. Dworzak MN, Fritsch G, Fleischer C, Printz D, Fröschl G, Buchinger P, Mann G, Gadner H . Multiparameter phenotype mapping of normal and post-chemotherapy B lymphopoiesis in pediatric bone marrow Leukemia 1997 11: 1266–1273

    Article  CAS  Google Scholar 

  27. Beishuizen A, Verhoeven MA, Mol EJ, Breit TM, Wolvers-Tettero IL, Van Dongen JJM . Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results Leukemia 1993 7: 2045–2053

    CAS  PubMed  Google Scholar 

  28. Langerak AW, Szczepanski T, Van der Burg M, Wolvers-Tetteroo IL, Van Dongen JJM . Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations Leukemia 1997 11: 2192–2199

    Article  CAS  Google Scholar 

  29. Szczepanski T, Langerak AW, Wolvers-Tettero ILM, Ossenkoppele GJ, Verhoef G, Stul M, Petersen EJ, De Bruijn MAC, Van ‘t Veer MB, Van Dongen JJM . Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease Leukemia 1998 12: 1081–1088

    Article  CAS  Google Scholar 

  30. Morley AA, Brisco MJ, Rice M, Snell L, Peng LM, Hughes E, Neoh SH, Sykes PJ . Leukaemia presenting as marrow hypoplasia: molecular detection of the leukaemic clone at the time of initial presentation Br J Haematol 1997 98: 940–944

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof Dr R Benner for his continuous support, the hemato-oncologists of the Sophia's Children's Hospital for providing the follow-up samples of the ALL patients in the DCLSG VI, VII and VIII protocols, the technicians of the immunophenotyping laboratory for their contribution in the analysis of the BM samples, Dr AW Langerak and Mrs ILM Wolvers-Tettero for the Southern blot and heteroduplex analyses, and Mr T van Os for making the figures. The study was supported by the Dutch Cancer Society/Koningin Wilhelmina Fonds (grants IKR 89–09 and EUR 94–852).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Lochem, E., Wiegers, Y., van den Beemd, R. et al. Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia 14, 688–695 (2000). https://doi.org/10.1038/sj.leu.2401749

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2401749

Keywords

This article is cited by

Search

Quick links