Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity

Abstract

Limited information exists on the relations between heart rate variability, hypertension, lifestyle factors and renin–angiotensin–aldosterone system. A total of 191 newly diagnosed yet untreated hypertensive men and women, 35–54 years of age, were compared with an age- and gender-stratified random population sample of 105 normotensive men and women to find out independent determinants of heart rate variability. Heart rate variability was computed from 5-min ECG time series using the standard deviation of normal-to-normal RR intervals (SDNN), the square root of the mean of squared differences between adjacent normal RR intervals (RMSSD) and the fast Fourier transform spectral analysis. All absolute measures of heart rate variability were reduced in hypertension (P<0.001 for each, ANOVA). In multivariate regression analyses, reduced heart rate variability was independently associated with higher heart rate (P<0.001 for all absolute measures of heart rate variability), higher age (P=0.001 for SDNN, total and LF powers; P<0.001 for RMSSD and HF power) and higher mean arterial pressure (P<0.05 for total power, P<0.01 for the other absolute measures) but not with sodium and alcohol intakes, body mass index and smoking. Increased plasma renin activity (PRA) was an independent attributor of reduced HF power (P<0.05) and reduced RMSSD (P<0.01). Increased blood pressure and heart rate are associated with decreased heart rate variability without any direct effects on heart rate variability of lifestyle factors. High PRA is an independent determinant of diminished modulation of vagal activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Malliani A, Pagani M, Lombardi F, Cerutti S . Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482–492.

    Article  CAS  PubMed  Google Scholar 

  2. Eckberg DL . Sympathovagal balance. A critical appraisal. Circulation 1997; 96: 3224–3232.

    Article  CAS  PubMed  Google Scholar 

  3. Langewitz W, Rüddel H, Schächinger H . Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress. Am Heart J 1994; 127: 122–128.

    Article  CAS  PubMed  Google Scholar 

  4. Huikuri HV et al. Heart rate variability in systemic hypertension. Am J Cardiol 1996; 77: 1073–1077.

    Article  CAS  PubMed  Google Scholar 

  5. Liao D et al. Association of cardiac autonomic function and the development of hypertension: the ARIC study. Am J Hypertens 1996; 9: 1147–1156.

    Article  CAS  PubMed  Google Scholar 

  6. Singh JP et al. Reduced heart rate variability and new-onset hypertension. Insights into pathogenesis of hypertension: the Framingham Heart Study. Hypertension 1998; 32: 293–297.

    Article  CAS  PubMed  Google Scholar 

  7. Furlan R et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects. Circulation 1990; 81: 537–547.

    Article  CAS  PubMed  Google Scholar 

  8. Aono T et al. Power spectral analysis of spontaneous blood pressure and heart rate variability in elderly hypertensives. Hypertens Res 1996; 19: 9–16.

    Article  CAS  PubMed  Google Scholar 

  9. Tuomilehto J et al. Urinary sodium excretion and cardiovascular mortality in Finland: a prospective study. Lancet 2001; 357: 848–851.

    Article  CAS  PubMed  Google Scholar 

  10. Poikolainen K . Alcohol and mortality: a review. J Clin Epidemiol 1995; 48: 455–465.

    Article  CAS  PubMed  Google Scholar 

  11. Hart C, Smith G, Hole D, Hawthorne V . Alcohol consumption and mortality from all causes, coronary heart disease, and stroke: results from a prospective cohort study of Scottish men with 21 years of follow-up. BMJ 1999; 318: 1725–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jousilahti P et al. Body weight, cardiovascular risk factors and coronary mortality. 15-year follow-up of middle-aged men and women in eastern Finland. Circulation 1996; 93: 1372–1379.

    Article  CAS  PubMed  Google Scholar 

  13. Bartecchi C, MacKenzie T, Schrier R . The human costs of tobacco use (first of two parts). N Engl J Med 1994; 330: 907–912.

    Article  CAS  PubMed  Google Scholar 

  14. MacKenzie T, Bartecchi C, Schrier R . The human costs of tobacco use (second of two parts). N Engl J Med 1994; 330: 975–980.

    Article  CAS  PubMed  Google Scholar 

  15. Liao D et al. Cardiac autonomic function and incident coronary heart disease: a population-based case–cohort study. The ARIC study. Atherosclerosis Risk in Communities Study. Am J Epidemiol 1997; 145: 696–706.

    Article  CAS  PubMed  Google Scholar 

  16. Tsuji H et al. Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 1996; 94: 2850–2855.

    Article  CAS  PubMed  Google Scholar 

  17. Alderman M et al. Plasma renin activity: a risk factor for myocardial infarction in hypertensive patients. Am J Hypertens 1997; 10: 1–8.

    Article  CAS  PubMed  Google Scholar 

  18. Emdin M et al. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss. Circulation 2001; 103: 513–519.

    Article  CAS  PubMed  Google Scholar 

  19. Hayano J et al. Short- and long-term effects of cigarette smoking on heart rate variability. Am J Cardiol 1990; 65: 84–88.

    Article  CAS  PubMed  Google Scholar 

  20. Kupari M, Virolainen J, Koskinen P, Tikkanen MJ . Short-term heart rate variability and factors modifying the risk of coronary artery disease in a population sample. Am J Cardiol 1993; 72: 897–903.

    Article  CAS  PubMed  Google Scholar 

  21. van de Borne P et al. Effects of alcohol on sympathetic activity, hemodynamics, and chemoreflex sensitivity. Hypertension 1997; 29: 1278–1283.

    Article  CAS  PubMed  Google Scholar 

  22. Minami J, Kawano Y, Ishimitsu T, Takishita S . Blunted parasympathetic modulation in salt-sensitive patients with essential hypertension: evaluation by power-spectral analysis of heart-rate variability. J Hypertens 1997; 15: 727–735.

    Article  CAS  PubMed  Google Scholar 

  23. American Society of Hypertension. ASH Public policy position paper. Recommendations for routine blood pressure measurement by indirect cuff sphygmomanometry. Am J Hypertens 1992; 5: 207–209.

  24. Jula A, Salminen JK, Saarijärvi S . Alexithymia. A facet of essential hypertension. Hypertension 1999; 33: 1057–1061.

    Article  CAS  PubMed  Google Scholar 

  25. Piccirillo G et al. Age-dependent influence on heart rate variability in salt-sensitive hypertensive subjects. J Am Geriatr Soc 1996; 44: 530–538.

    Article  CAS  PubMed  Google Scholar 

  26. Guzzetti S et al. Sympathetic predominance in essential hypertension: a study employing spectral analysis of heart rate variability. J Hypertens 1988; 6: 711–717.

    Article  CAS  PubMed  Google Scholar 

  27. Tsuji H et al. Determinants of heart rate variability. J Am Coll Cardiol 1996; 28: 1539–1546.

    Article  CAS  PubMed  Google Scholar 

  28. Pikkujämsä SM et al. Relationship between heart rate variability and cardiovascular risk factors in middle-aged males. Ann Noninvas Electrocardiol 1996; 1: 354–362.

    Article  Google Scholar 

  29. Salo TM et al. Comparison of autonomic withdrawal in men with obstructive sleep apnea syndrome, systemic hypertension, and neither condition. Am J Cardiol 2000; 85: 232–238.

    Article  CAS  PubMed  Google Scholar 

  30. Liao D et al. Age, race, and sex differences in autonomic cardiac function measured by spectral analysis of heart rate variability—the ARIC study. Am J Cardiol 1995; 76: 906–912.

    Article  CAS  PubMed  Google Scholar 

  31. Huikuri HV et al. Sex-related differences in autonomic modulation of heart rate in middle-aged subjects. Circulation 1996; 94: 122–125.

    Article  CAS  PubMed  Google Scholar 

  32. Duprez DA et al. Renin–angiotensin–aldosterone system, RR interval, and blood pressure variability during postural changes in borderline arterial hypertension. Am J Hypertens 1995; 8: 683–688.

    Article  CAS  PubMed  Google Scholar 

  33. Tomiyama H et al. Effects of an ACE inhibitor and a calcium channel blocker on cardiovascular autonomic nervous system and carotid distensibility in patients with mild to moderate hypertension. Am J Hypertens 1998; 11: 682–689.

    Article  CAS  PubMed  Google Scholar 

  34. Rizzoni D et al. Effect of antihypertensive treatment on daytime and nighttime power spectral analysis of heart rate. Am J Hypertens 1993; 6: 204–208.

    CAS  PubMed  Google Scholar 

  35. Piccirillo G et al. Heart rate and blood pressure variabilities in salt-sensitive hypertension. Hypertension 1996; 28: 944–952.

    Article  CAS  PubMed  Google Scholar 

  36. Reid IA . Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol 1992; 262: E763–E778.

    CAS  PubMed  Google Scholar 

  37. Julius S, Esler M . Increased central blood volume: a possible pathophysiological factor in mild low-renin essential hypertension. Clin Sci Mol Med 1976; 3: 207s–210s.

    CAS  Google Scholar 

  38. Task Force of The European Society of Cardiology, The North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 1996; 17: 354–381.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Virtanen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Virtanen, R., Jula, A., Kuusela, T. et al. Reduced heart rate variability in hypertension: associations with lifestyle factors and plasma renin activity. J Hum Hypertens 17, 171–179 (2003). https://doi.org/10.1038/sj.jhh.1001529

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001529

Keywords

This article is cited by

Search

Quick links