Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres

Abstract

Gelatin hydrogel microspheres (GHMs) have been reported as novel non-viral vectors for gene or protein delivery (GHM therapy). However, the components of an effective catheter-based delivery strategy for GHM therapy are unknown. We evaluated the effectiveness of three catheter-based strategies for cardiac GHM therapy: (1) antegrade injection (AI) via coronary arteries; (2) retrograde injection (RI) via coronary veins; and (3) direct myocardial injection (DI) via the coronary sinus. AI distributed microspheres homogeneously throughout the target area with 73±11% retention. RI scattered microspheres non-homogenously with 22±8% retention. DI distributed microspheres in the needle-advanced area with 47±14% retention. However, despite high efficiency, AI did not show biological effects of inducing angiogenesis from basic fibroblast growth factor bound to GHMs. Furthermore, focal micro-infarctions, owing to micro-embolism of aggregated GHMs into small coronary arterioles, were detected in the AI group. Conversely, only RI and DI groups displayed increased coronary flow reserve. DI groups also demonstrated increased capillary density. These results suggest that RI and DI are effective for cardiac GHM therapy, while AI appears inappropriate owing to the risk of focal infarctions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Levy D, Kenchaiah S, Larson MG, Benjamin EJ, Kupka MJ, Ho KK et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med 2002; 347: 1397–1402.

    Article  Google Scholar 

  2. Hajjar RJ, del Monte F, Matsui T, Rosenzweig A . Prospects for gene therapy for heart failure. Circ Res 2000; 86: 616–621.

    Article  CAS  Google Scholar 

  3. Donahue JK, Heldman AW, Fraser H, McDonald AD, Miller JM, Rade JJ et al. Focal modification of electrical conduction in the heart by viral gene transfer. Nat Med 2000; 6: 1395–1398.

    Article  CAS  Google Scholar 

  4. Tabata Y, Hijikata S, Muniruzzaman M, Ikada Y . Neovascularization effect of biodegradable gelatin microspheres incorporating basic fibroblast growth factor. J Biomater Sci Polym Ed 1999; 10: 79–94.

    Article  CAS  Google Scholar 

  5. Kasahara H, Tanaka E, Fukuyama N, Sato E, Sakamoto H, Tabata Y et al. Biodegradable gelatin hydrogel potentiates the angiogenic effect of fibroblast growth factor 4 plasmid in rabbit hindlimb ischemia. J Am Coll Cardiol 2003; 41: 1056–1062.

    Article  CAS  Google Scholar 

  6. Nagaya N, Kangawa K, Kanda M, Uematsu M, Horio T, Fukuyama N et al. Hybrid cell-gene therapy for pulmonary hypertension based on phagocytosing action of endothelial progenitor cells. Circulation 2003; 108: 889–895.

    Article  CAS  Google Scholar 

  7. Tokunaga N, Nagaya N, Shirai M, Tanaka E, Ishibashi-Ueda H, Harada-Shiba M et al. Adrenomedullin gene transfer induces therapeutic angiogenesis in a rabbit model of chronic hind limb ischemia: benefits of a novel nonviral vector, gelatin. Circulation 2004; 109: 526–531.

    Article  CAS  Google Scholar 

  8. Hosaka A, Koyama H, Kushibiki T, Tabata Y, Nishiyama N, Miyata T et al. Gelatin hydrogel microspheres enable pinpoint delivery of basic fibroblast growth factor for the development of functional collateral vessels. Circulation 2004; 110: 3322–3328.

    Article  CAS  Google Scholar 

  9. Sakakibara Y, Tambara K, Sakaguchi G, Lu F, Yamamoto M, Nishimura K et al. Toward surgical angiogenesis using slow-released basic fibroblast growth factor. Eur J Cardiothorac Surg 2003; 24: 105–111; discussion 112.

    Article  Google Scholar 

  10. Hayase M, Del Monte F, Kawase Y, Macneill BD, McGregor J, Yoneyama R et al. Catheter-based antegrade intracoronary viral gene delivery with coronary venous blockade. Am J Physiol Heart Circ Physiol 2005; 288: H2995–H3000.

    Article  CAS  Google Scholar 

  11. Kornowski R, Fuchs S, Leon MB, Epstein SE . Delivery strategies to achieve therapeutic myocardial angiogenesis. Circulation 2000; 101: 454–458.

    Article  CAS  Google Scholar 

  12. Grossman PM, Han Z, Palasis M, Barry JJ, Lederman RJ . Incomplete retention after direct myocardial injection. Catheter Cardiovasc Interv 2002; 55: 392–397.

    Article  Google Scholar 

  13. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    Article  CAS  Google Scholar 

  14. Arras M, Mollnau H, Strasser R, Wenz R, Ito WD, Schaper J et al. The delivery of angiogenic factors to the heart by microsphere therapy. Nat Biotechnol 1998; 16: 159–162.

    Article  CAS  Google Scholar 

  15. Boekstegers P, Kupatt C . Current concepts and applications of coronary venous retroinfusion. Basic Res Cardiol 2004; 99: 373–381.

    Article  Google Scholar 

  16. Herity NA, Lo ST, Oei F, Lee DP, Ward MR, Filardo SD et al. Selective regional myocardial infiltration by the percutaneous coronary venous route: a novel technique for local drug delivery. Catheter Cardiovasc Interv 2000; 51: 358–363.

    Article  CAS  Google Scholar 

  17. Fearon WF, Ikeno F, Bailey LR, Hiatt BL, Herity NA, Carter AJ et al. Evaluation of high-pressure retrograde coronary venous delivery of FGF-2 protein. Catheter Cardiovasc Interv 2004; 61: 422–428.

    Article  Google Scholar 

  18. Nakazawa HK, Roberts DL, Klocke FJ . Quantitation of anterior descending vs circumflex venous drainage in the canine great cardiac vein and coronary sinus. Am J Physiol 1978; 234: H163–H166.

    CAS  PubMed  Google Scholar 

  19. Hochberg MS, Roberts WC, Morrow AG, Austen WG . Selective arterialization of the coronary venous system. Encouraging long-term flow evaluation utilizing radioactive microspheres. J Thorac Cardiovasc Surg 1979; 77: 1–12.

    CAS  PubMed  Google Scholar 

  20. Boekstegers P, Giehrl W, von Degenfeld G, Steinbeck G . Selective suction and pressure-regulated retroinfusion: an effective and safe approach to retrograde protection against myocardial ischemia in patients undergoing normal and high risk percutaneous transluminal coronary angioplasty. J Am Coll Cardiol 1998; 31: 1525–1533.

    Article  CAS  Google Scholar 

  21. von Degenfeld G, Raake P, Kupatt C, Lebherz C, Hinkel R, Gildehaus FJ et al. Selective pressure-regulated retroinfusion of fibroblast growth factor-2 into the coronary vein enhances regional myocardial blood flow and function in pigs with chronic myocardial ischemia. J Am Coll Cardiol 2003; 42: 1120–1128.

    Article  CAS  Google Scholar 

  22. Raake P, von Degenfeld G, Hinkel R, Vachenauer R, Sandner T, Beller S et al. Myocardial gene transfer by selective pressure-regulated retroinfusion of coronary veins: comparison with surgical and percutaneous intramyocardial gene delivery. J Am Coll Cardiol 2004; 44: 1124–1129.

    Article  CAS  Google Scholar 

  23. Ortale JR, Gabriel EA, Iost C, Marquez CQ . The anatomy of the coronary sinus and its tributaries. Surg Radiol Anat 2001; 23: 15–21.

    Article  CAS  Google Scholar 

  24. Thompson CA, Nasseri BA, Makower J, Houser S, McGarry M, Lamson T et al. Percutaneous transvenous cellular cardiomyoplasty. A novel nonsurgical approach for myocardial cell transplantation. J Am Coll Cardiol 2003; 41: 1964–1971.

    Article  Google Scholar 

  25. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am Coll Cardiol 2004; 44: 1690–1699.

    Article  Google Scholar 

  26. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141–148.

    Article  Google Scholar 

  27. Orlic D, Kajstura J, Chimenti S, Jakoniuk I, Anderson SM, Li B et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701–705.

    Article  CAS  Google Scholar 

  28. Amado LC, Saliaris AP, Schuleri KH, St John M, Xie JS, Cattaneo S et al. Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proc Natl Acad Sci USA 2005; 102: 11474–11479.

    Article  CAS  Google Scholar 

  29. Chien KR . Stem cells: lost in translation. Nature 2004; 428: 607–608.

    Article  CAS  Google Scholar 

  30. Suzuki K, Murtuza B, Fukushima S, Smolenski RT, Varela-Carver A, Coppen SR et al. Targeted cell delivery into infarcted rat hearts by retrograde intracoronary infusion: distribution, dynamics, and influence on cardiac function. Circulation 2004; 110: II225–II230.

    PubMed  Google Scholar 

  31. Vulliet PR, Greeley M, Halloran SM, MacDonald KA, Kittleson MD . Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet 2004; 363: 783–784.

    Article  Google Scholar 

  32. Blanton Jr JR, Grant AL, McFarland DC, Robinson JP, Bidwell CA . Isolation of two populations of myoblasts from porcine skeletal muscle. Muscle Nerve 1999; 22: 43–50.

    Article  Google Scholar 

  33. De Grand AM, Frangioni JV . An operational near-infrared fluorescence imaging system prototype for large animal surgery. Technol Cancer Res Treat 2003; 2: 553–562.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Research Institute for Production Development (Kyoto, Japan), Kirin Brewery Co. Ltd (Tokyo, Japan), Medtronic Vascular (CA, USA), and MID Co. Ltd (Fukuoka, Japan) for their financial support. This study was funded in part by a grant (R01-HL-78691) to Roger J Hajjar, MD from the National Heart Lung and Blood Institute.

We thank Jennifer McGregor, Catherine McMahon, and James Lough (Massachusetts General Hospital) for their technical help with animal care and handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Hoshino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoshino, K., Kimura, T., De Grand, A. et al. Three catheter-based strategies for cardiac delivery of therapeutic gelatin microspheres. Gene Ther 13, 1320–1327 (2006). https://doi.org/10.1038/sj.gt.3302793

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302793

Keywords

This article is cited by

Search

Quick links