Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aseptic loosening

Abstract

Although total joint replacement surgery is one of the most successful clinical procedures performed today, bone loss around knee and hip implants (osteolysis), resulting in aseptic loosening of the prosthesis, remains a major problem for many patients. Over the last decade much has been learned about this process, which is caused by wear debris particles that simulate a local inflammatory response and osteoclastic bone resorption. Aseptic loosening cannot be prevented or treated by existing nonsurgical methods. Gene transfer, however, offers novel possibilities. Here, we review the current state of the field and the experimental gene therapy approaches that have been investigated toward a solution to aseptic loosening of prosthetic implants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Glassman AH, Engh CA, Suthers KE . Ten year follow-up of total hip arthroplasty using extensively porous coated femoral components. Orthop Trans 1993; 16: 702.

    Google Scholar 

  2. Kim YH, Kim VE . Results of the Harris–Galante hip prosthesis. Orthrop Trans 1993; 16: 701–702.

    Google Scholar 

  3. Stauffer RN . Correction of arthritic deformities of the hip. In: McCarty DJ (ed). Arthritis & Allied Conditions. Philadephia: Lea & Febinger, 1985, pp 757–770.

    Google Scholar 

  4. Mulroy WF, Harris WH . Revision total hip arthroplasty with use of so-called second-generation cementing techniques for aseptic loosening of the femoral component. A fifteen-year-average follow-up study. J Bone Joint Surg Am 1996; 78: 325–330.

    CAS  PubMed  Google Scholar 

  5. Jasty MJ et al. Localized osteolysis in stable, non-septic total hip replacement. J Bone Joint Surg Am 1986; 68: 912–919.

    CAS  PubMed  Google Scholar 

  6. Imkamp E, Mittermayer C, Hunold W . Animal experiment studies of the biocompatibility of colored and plain lens haptics of polymethylmethacrylate. Fortschritte Ophthalmol 1990; 87: 95–98.

    CAS  Google Scholar 

  7. Boss JH, Shajrawi I, Mendes DG . The nature of the bone–implant interface. The lessons learned from implant retrieval and analysis in man and experimental animal. Med Progr Technol 1994; 20: 119–142.

    CAS  Google Scholar 

  8. Maguire Jr JK, Coscia MF, Lynch MH . Foreign body reaction to polymeric debris following total hip arthroplasty. Clin Orthop Relat Res 1987; 216: 213–223.

    Google Scholar 

  9. Perry MJ et al. Analysis of cell types and mediator production from tissues around loosening joint implants. Br J Rheumatol 1995; 34: 1127–1134.

    CAS  PubMed  Google Scholar 

  10. Boynton EL, Henry M, Morton J, Waddell JP . The inflammatory response to particulate wear debris in total hip arthroplasty. Can J Surg 1995; 38: 507–515.

    CAS  PubMed  Google Scholar 

  11. Santavirta S et al. Aggressive granulomatous lesions associated with hip arthroplasty. Immunopathological studies. J Bone Joint Surg Am 1990; 72: 252–258.

    CAS  PubMed  Google Scholar 

  12. Eftekhar NS, Doty SB, Johnston AD, Parisien MV . Prosthetic synovitis. Hip 1985: 169–183.

  13. Kaufman RL, Tong I, Beardmore TD . Prosthetic synovitis: clinical and histologic characteristics. J Rheumatol 1985; 12: 1066–1074.

    CAS  PubMed  Google Scholar 

  14. Thornhill TS et al. Biochemical and histological evaluation of the synovial-like tissue around failed (loose) total joint replacement prostheses in human subjects and a canine model. Biomaterials 1990; 11: 69–72.

    CAS  PubMed  Google Scholar 

  15. Manolagas SC et al. Estrogen, cytokines, and the control of osteoclast formation and bone resorption in vitro and in vivo. Osteoporosis Int 1993; 3(Suppl 1): 114–116.

    Google Scholar 

  16. Bertolini D et al. Stimulation of bone resorption and inhibition of bone formation in vitro by tumor necrosis factors. Nature 1986; 319: 516–518.

    CAS  PubMed  Google Scholar 

  17. Gowen M et al. An interleukin 1-like factor stimulates bone resorption in vitro. Nature 1983; 306: 378.

    CAS  PubMed  Google Scholar 

  18. Lassus J et al. Macrophage activation results in bone resorption. Clin Orthop 1998; 352: 7–15.

    Google Scholar 

  19. Xu JW et al. Interleukin-11 (IL-11) in aseptic loosening of total hip replacement (THR). Scand J Rheumatol 1998; 27: 363–367.

    CAS  PubMed  Google Scholar 

  20. Xu JW et al. Production of platelet-derived growth factor in aseptic loosening of total hip replacement. Rheumatol Int 1998; 17: 215–221.

    CAS  PubMed  Google Scholar 

  21. Brennan FM, Feldmann M . Cytokines in autoimmunity. Curr Opin Immunol 1992; 4: 754–759.

    CAS  PubMed  Google Scholar 

  22. Bando Y et al. Immunocytochemical localization of inflammatory cytokines and vascular adhesion receptors in radicular cysts. J Oral Pathol Med 1993; 22: 221–227.

    CAS  PubMed  Google Scholar 

  23. Pollice PF, Silverton SF, Horowitz SM . Polymethylmethacrylate-stimulated macrophages increase rat osteoclast precursor recruitment through their effect on osteoblasts in vitro. J Orthop Res 1995; 13: 325–334.

    CAS  PubMed  Google Scholar 

  24. Han CD, Choe WS, Yoo JH . Effect of polyethylene wear on osteolysis in cementless primary total hip arthroplasty: minimal 5-year follow-up study. J Arthroplasty 1999; 14: 714–723.

    CAS  PubMed  Google Scholar 

  25. Sacomen D et al. Effects of polyethylene particles on tissue surrounding knee arthroplasties in rabbits. J Biomed Mater Res 1998; 43: 123–130.

    CAS  PubMed  Google Scholar 

  26. Sabokbar A, Pandey R, Quinn JM, Athanasou NA . Osteoclastic differentiation by mononuclear phagocytes containing biomaterial particles. Arch Orthop Trauma Surg 1998; 117: 136–140.

    CAS  PubMed  Google Scholar 

  27. Wang W et al. Biomaterial particle phagocytosis by bone-resorbing osteoclasts. J Bone Joint Surg Br 1997; 79: 849–856.

    CAS  PubMed  Google Scholar 

  28. Xu JW et al. Macrophage-colony stimulating factor (M-CSF) is increased in the synovial-like membrane of the periprosthetic tissues in the aseptic loosening of total hip replacement (THR). Clin Rheumatol 1997; 16: 243–248.

    CAS  PubMed  Google Scholar 

  29. Rader CP et al. Cytokine response of human macrophage-like cells after contact with polyethylene and pure titanium particles. J Arthroplasty 1999; 14: 840–848.

    CAS  PubMed  Google Scholar 

  30. Al-Saffar N, Khwaja HA, Kadoya Y, Revell PA . Assessment of the role of GM-CSF in the cellular transformation and the development of erosive lesions around orthopaedic implants. Am J Clin Pathol 1996; 105: 628–639.

    CAS  PubMed  Google Scholar 

  31. Shanbhag AS et al. Cellular mediators secreted by interfacial membranes obtained at revision total hip arthroplasty. J Arthroplasty 1995; 10: 498–506.

    CAS  PubMed  Google Scholar 

  32. Appel AM et al. Prosthesis-associated pseudomembrane-induced bone resorption. Br J Rheumatol 1990; 29: 32–36.

    CAS  PubMed  Google Scholar 

  33. Shanbhag AS, Macaulay W, Stefanovic-Racic M, Rubash HE . Nitric oxide release by macrophages in response to particulate wear debris. J Biomed Mater Res 1998; 41: 497–503.

    CAS  PubMed  Google Scholar 

  34. Horowitz SM, Luchetti WT, Gonzales JB, Ritchie CK . The effects of cobalt chromium upon macrophages. J Biomed Mater Res 1998; 41: 468–473.

    CAS  PubMed  Google Scholar 

  35. Granchi D et al. Bone-resorbing cytokines in serum of patients with aseptic loosening of hip prostheses. J Bone Joint Surg Br 1998; 80: 912–917.

    CAS  PubMed  Google Scholar 

  36. Manlapaz M, Maloney WJ, Smith RL . In vitro activation of human fibroblasts by retrieved titanium alloy wear debris. J Orthop Res 1996; 14: 465–472.

    CAS  PubMed  Google Scholar 

  37. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT . Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials 1996; 17: 2233–2240.

    CAS  PubMed  Google Scholar 

  38. Glant TT, Jacobs JJ . Response of three murine macrophage populations to particulate debris: bone resorption in organ cultures. J Orthop Res 1994; 12: 720–731.

    CAS  PubMed  Google Scholar 

  39. Maloney WJ et al. Isolation and characterization of wear particles generated in patients who have had failure of a hip arthroplasty without cement. J Bone Joint Surg Am 1995; 77: 1301–1310.

    CAS  PubMed  Google Scholar 

  40. Anderson DM et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997; 390: 175–179.

    CAS  PubMed  Google Scholar 

  41. Roux S, Orcel P . Bone loss: factors that regulate osteoclast differentiation: an update. Arthritis Res 2000; 2: 451–456.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Hofbauer LC . Osteoprotegerin ligand and osteoprotegerin: novel implications for osteoclast biology and bone metabolism. Eur J Endocrinol 1999; 141: 195–210.

    CAS  PubMed  Google Scholar 

  43. Simonet WS et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 1997; 89: 309–319.

    CAS  PubMed  Google Scholar 

  44. Lacey DL et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998; 93: 165–176.

    CAS  PubMed  Google Scholar 

  45. Yasuda H et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998; 95: 3597–3602.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kong YY et al. Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999; 402: 304–309.

    CAS  PubMed  Google Scholar 

  47. Bucay N et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 1998; 12: 1260–1268.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakagawa N et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun 1998; 253: 395–400.

    CAS  PubMed  Google Scholar 

  49. Myers DE et al. Expression of functional RANK on mature rat and human osteoclasts. FEBS Lett 1999; 463: 295–300.

    CAS  PubMed  Google Scholar 

  50. Hsu H et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA 1999; 96: 3540–3545.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dougall WC et al. RANK is essential for osteoclast and lymph node development. Genes Dev 1999; 13: 2412–2424.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci USA 2000; 97: 1566–1571.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Teitelbaum SL . Osteoclasts, integrins, and osteoporosis. J Bone Miner Metab 2000; 18: 344–349.

    CAS  PubMed  Google Scholar 

  54. Capparelli C et al. Osteoprotegerin prevents and reverses hypercalcemia in a murine model of humoral hypercalcemia of malignancy. Cancer Res 2000; 60: 783–787.

    CAS  PubMed  Google Scholar 

  55. Barnes PJ, Karin M . Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066–1071.

    CAS  PubMed  Google Scholar 

  56. Baldwin Jr AS . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    CAS  PubMed  Google Scholar 

  57. Finco TS, Baldwin AS . Mechanistic aspects of NF-kappa B regulation: the emerging role of phosphorylation and proteolysis. Immunity 1995; 3: 263–272.

    CAS  PubMed  Google Scholar 

  58. Iotsova V et al. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 1997; 3: 1285–1289.

    CAS  PubMed  Google Scholar 

  59. Franzoso G et al. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev 1997; 11: 3482–3496.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Unlap MT, Jope RS . Dexamethasone attenuates NF-kappa B DNA binding activity without inducing I kappa B levels in rat brain in vivo. Brain Res Mol Brain Res 1997; 45: 83–89.

    CAS  PubMed  Google Scholar 

  61. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin Jr AS . Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 1995; 270: 283–286.

    CAS  PubMed  Google Scholar 

  62. Howie DW, Vernon-Roberts B, Oakeshott R, Manthey B . A rat model of resorption of bone at the cement–bone interface in the presence of polyethylene wear particles. J Bone Joint Surg Am 1988; 70: 257–263.

    CAS  PubMed  Google Scholar 

  63. Shanbhag AS, Hasselman CT, Rubash HE . The John Charnley Award. Inhibition of wear debris mediated osteolysis in a canine total hip arthroplasty model. Clin Orthop 1997; 344: 33–43.

    Google Scholar 

  64. Pap G et al. Development and characteristics of a synovial-like interface membrane around cemented tibial hemiarthroplasties in a novel rat model of aseptic prosthesis loosening. Arthritis Rheum 2001; 44: 956–963.

    CAS  PubMed  Google Scholar 

  65. Sud S et al. Effects of cytokine gene therapy on particulate-induced inflammation in the murine air pouch. Inflammation 2001; 25: 361–372.

    CAS  PubMed  Google Scholar 

  66. Schwarz EM et al. Quantitative small-animal surrogate to evaluate drug efficacy in preventing wear debris-induced osteolysis. J Orthop Res 2000; 18: 849–855.

    CAS  PubMed  Google Scholar 

  67. Merkel KD et al. Tumor necrosis factor-alpha mediates orthopedic implant osteolysis. Am J Pathol 1999; 154: 203–210.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Schwarz EM et al. Tumor necrosis factor-alpha/nuclear transcription factor-kappaB signaling in periprosthetic osteolysis. J Orthop Res 2000; 18: 472–480.

    CAS  PubMed  Google Scholar 

  69. Childs LM et al. In vivo RANK signaling blockade using the receptor activator of NF-kappa B:Fc effectively prevents and ameliorates wear debris-induced osteolysis via osteoclast depletion without inhibiting osteogenesis. J Bone Miner Res 2002; 17: 192–199.

    CAS  PubMed  Google Scholar 

  70. Childs LM, Goater JJ, O'Keefe RJ, Schwarz EM . Efficacy of etanercept for wear debris-induced osteolysis. J Bone Miner Res 2001; 16: 338–347.

    CAS  PubMed  Google Scholar 

  71. Haynes DR et al. Drug inhibition of the macrophage response to metal wear particles in vitro. Clin Orthop Relat Res 1996; 323: 316–326.

    Google Scholar 

  72. Thompson RC, Dripps DJ, Eisenberg SP . Interleukin-1 receptor antagonist (IL-1ra) as a probe and as a treatment for IL-1 mediated disease. Int J Immunopharmacol 1992; 14: 475–480.

    CAS  PubMed  Google Scholar 

  73. Wooley PH et al. The effect of an interleukin-1 receptor antagonist protein on type II collagen-induced arthritis and antigen-induced arthritis in mice. Arthritis Rheum 1993; 36: 1305–1314.

    CAS  PubMed  Google Scholar 

  74. van Roon JA et al. Prevention and reversal of cartilage degradation in rheumatoid arthritis by interleukin-10 and interleukin-4. Arthritis Rheum 1996; 39: 829–835.

    CAS  PubMed  Google Scholar 

  75. Perretti M, Szabo C, Thiemermann C . Effect of interleukin-4 and interleukin-10 on leucocyte migration and nitric oxide production in the mouse. Br J Pharmacol 1995; 116: 2251–2257.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Hawley RG, Lieu FH, Fong AZ, Hawley TS . Versatile retroviral vectors for potential use in gene therapy. Gene Therapy 1994; 1: 136–138.

    CAS  PubMed  Google Scholar 

  77. Hung GL et al. Suppression of intra-articular responses to interleukin-1 by transfer of the interleukin-1 receptor antagonist gene to synovium. Gene Therapy 1994; 1: 64–69.

    CAS  PubMed  Google Scholar 

  78. Childs LM, Goater JJ, O'Keefe RJ, Schwarz EM . Effect of anti-tumor necrosis factor-alpha gene therapy on wear debris-induced osteolysis. J Bone Joint Surg Am 2001; 83A: 1789–1797.

    Google Scholar 

  79. Carmody EE et al. Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum 2002; 46: 1298–1308.

    CAS  PubMed  Google Scholar 

  80. Yang SY et al. IL-10 and IL-1ra gene transfer using retroviral vectors ameliorates an experimental inflammatory reaction to orthopaedic wear debris. Inflamm Res 2002; 51: 342–350.

    CAS  PubMed  Google Scholar 

  81. Joosten LA et al. IL-1 alpha beta blockade prevents cartilage and bone destruction in murine type II collagen-induced arthritis, whereas TNF-alpha blockade only ameliorates joint inflammation. J Immunol 1999; 163: 5049–5055.

    CAS  PubMed  Google Scholar 

  82. Assuma R et al. IL-1 and TNF antagonists inhibit the inflammatory response and bone loss in experimental periodontitis. J Immunol 1998; 160: 403–409.

    CAS  PubMed  Google Scholar 

  83. Raza A . Anti-TNF therapies in rheumatoid arthritis, Crohn's disease, sepsis, and myelodysplastic syndromes. Microsc Res Tech 2000; 50: 229–235.

    CAS  PubMed  Google Scholar 

  84. Tani-Ishii N, Tsunoda A, Teranaka T, Umemoto T . Autocrine regulation of osteoclast formation and bone resorption by IL- 1 alpha and TNF alpha. J Dent Res 1999; 78: 1617–1623.

    CAS  PubMed  Google Scholar 

  85. Lam J et al. TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 2000; 106: 1481–1488.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Zhang YH et al. Tumor necrosis factor-alpha stimulates RANKL-induced osteoclastogenesis via coupling of TNFr1 and RANK signaling pathways. J Biol Chem 2001; 276: 563–568.

    CAS  PubMed  Google Scholar 

  87. Yang SY et al. Adeno-associated virus-mediated osteoprotegerin gene transfer protects against particulate polyethylene-induced osteolysis in a murine model. Arthritis Rheum 2002; 46: 2514–2523.

    CAS  PubMed  Google Scholar 

  88. Goater JJ et al. Efficacy of ex vivo OPG gene therapy in preventing wear debris induced osteolysis. J Orthop Res 2002; 20: 169–173.

    CAS  PubMed  Google Scholar 

  89. Ulrich-Vinther M et al. Recombinant adeno-associated virus-mediated osteoprotegerin gene therapy inhibits wear debris-induced osteolysis. J Bone Joint Surg Am 2002; 84A: 1405–1412.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wooley, P., Schwarz, E. Aseptic loosening. Gene Ther 11, 402–407 (2004). https://doi.org/10.1038/sj.gt.3302202

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3302202

Keywords

This article is cited by

Search

Quick links